These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 32453948)
1. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Dregni AJ; Duan P; Hong M Biochemistry; 2020 Jun; 59(24):2237-2248. PubMed ID: 32453948 [TBL] [Abstract][Full Text] [Related]
2. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628 [TBL] [Abstract][Full Text] [Related]
3. Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy. Dregni AJ; Wang HK; Wu H; Duan P; Jin J; DeGrado WF; Hong M J Am Chem Soc; 2021 May; 143(20):7839-7851. PubMed ID: 33983722 [TBL] [Abstract][Full Text] [Related]
4. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat. El Mammeri N; Duan P; Dregni AJ; Hong M Sci Adv; 2023 Jul; 9(28):eadh4731. PubMed ID: 37450599 [TBL] [Abstract][Full Text] [Related]
5. Misfolding and Self-Assembly Dynamics of Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau. He H; Liu Y; Sun Y; Ding F J Chem Inf Model; 2021 Jun; 61(6):2916-2925. PubMed ID: 34032430 [TBL] [Abstract][Full Text] [Related]
6. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046 [TBL] [Abstract][Full Text] [Related]
7. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model. Nguyen PH; Derreumaux P J Phys Chem B; 2022 May; 126(18):3431-3438. PubMed ID: 35476504 [TBL] [Abstract][Full Text] [Related]
8. Direct Observation of the Self-Aggregation of R3R4 Bi-repeat of Tau Protein. Jayan P; Vahid AA; Kizhakkeduth ST; Muhammed SOH; Shibina AB; Vijayan V Chembiochem; 2021 Jun; 22(12):2093-2097. PubMed ID: 33826208 [TBL] [Abstract][Full Text] [Related]
9. Differential Binding and Conformational Dynamics of Tau Microtubule-Binding Repeats with a Preformed Amyloid-β Fibril Seed. Song Z; Gatch AJ; Sun Y; Ding F ACS Chem Neurosci; 2023 Apr; 14(7):1321-1330. PubMed ID: 36975100 [TBL] [Abstract][Full Text] [Related]
10. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Annadurai N; Malina L; Malohlava J; Hajdúch M; Das V Biochimie; 2022 Sep; 200():79-86. PubMed ID: 35623497 [TBL] [Abstract][Full Text] [Related]
11. Structures of AT8 and PHF1 phosphomimetic tau: Insights into the posttranslational modification code of tau aggregation. Mammeri NE; Dregni AJ; Duan P; Hong M Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2316175121. PubMed ID: 38408247 [TBL] [Abstract][Full Text] [Related]
12. Membrane-induced tau amyloid fibrils. El Mammeri N; Gampp O; Duan P; Hong M Commun Biol; 2023 Apr; 6(1):467. PubMed ID: 37117483 [TBL] [Abstract][Full Text] [Related]
13. Molecular Dynamics Simulations of the Tau Amyloid Fibril Core Dimer at the Surface of a Lipid Bilayer Model: I. In Alzheimer's Disease. Nguyen PH; Derreumaux P J Phys Chem B; 2022 Jul; 126(26):4849-4856. PubMed ID: 35759677 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy. Andronesi OC; von Bergen M; Biernat J; Seidel K; Griesinger C; Mandelkow E; Baldus M J Am Chem Soc; 2008 May; 130(18):5922-8. PubMed ID: 18386894 [TBL] [Abstract][Full Text] [Related]
15. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135 [TBL] [Abstract][Full Text] [Related]
16. Novel tau filament fold in corticobasal degeneration. Zhang W; Tarutani A; Newell KL; Murzin AG; Matsubara T; Falcon B; Vidal R; Garringer HJ; Shi Y; Ikeuchi T; Murayama S; Ghetti B; Hasegawa M; Goedert M; Scheres SHW Nature; 2020 Apr; 580(7802):283-287. PubMed ID: 32050258 [TBL] [Abstract][Full Text] [Related]
17. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Liu H; Zhong H; Xu Z; Zhang Q; Shah SJA; Liu H; Yao X Phys Chem Chem Phys; 2020 May; 22(19):10968-10980. PubMed ID: 32392276 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
19. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411 [TBL] [Abstract][Full Text] [Related]
20. β-Sheet core of tau paired helical filaments revealed by solid-state NMR. Daebel V; Chinnathambi S; Biernat J; Schwalbe M; Habenstein B; Loquet A; Akoury E; Tepper K; Müller H; Baldus M; Griesinger C; Zweckstetter M; Mandelkow E; Vijayan V; Lange A J Am Chem Soc; 2012 Aug; 134(34):13982-9. PubMed ID: 22862303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]