BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32454168)

  • 1. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing.
    Wu S; Guo Y; Joan HI; Tu Y; Adil MF; Sehar S; Zhao D; Shamsi IH
    Genomics; 2020 Sep; 112(5):3075-3088. PubMed ID: 32454168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (
    Wu S; Guo Y; Adil MF; Sehar S; Cai B; Xiang Z; Tu Y; Zhao D; Shamsi IH
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in water loss and cell wall metabolism during postharvest withering of tobacco (Nicotiana tabacum L.) leaves using tandem mass tag-based quantitative proteomics approach.
    Wu S; Cao G; Adil MF; Tu Y; Wang W; Cai B; Zhao D; Shamsi IH
    Plant Physiol Biochem; 2020 May; 150():121-132. PubMed ID: 32142985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro.
    Uzelac B; Janošević D; Simonović A; Motyka V; Dobrev PI; Budimir S
    Protoplasma; 2016 Mar; 253(2):259-75. PubMed ID: 25837009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Proteomic Analysis by Isobaric Tags for the Relative and Absolute Quantification Reveals the Responses of Tobacco (
    Li J; Yang R; Jiang Y; Sun S; Li J; Gu H; Lin Y; Luo X; He C; Chen Y
    Front Plant Sci; 2022; 13():847388. PubMed ID: 35548306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of nitrogen fertilization on leaf senescence, photosynthetic characteristics, yield, and quality of different flue-cured tobacco varieties].
    Zhang SJ; Huang YJ; Ren QC; Zhang XQ; Yang ZX; Yang TZ
    Ying Yong Sheng Tai Xue Bao; 2010 Mar; 21(3):668-74. PubMed ID: 20560323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the proteomic expression profile of tobacco (Nicotiana tabacum) leaves during four growth stages using the iTRAQ method.
    Chen M; Yan G; Wang X; Huang Z; Shao X; Wu D; Zhang X; Liu B
    Anal Bioanal Chem; 2019 Jan; 411(2):403-411. PubMed ID: 30478513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection.
    Zhong X; Wang ZQ; Xiao R; Wang Y; Xie Y; Zhou X
    J Proteomics; 2017 Jan; 152():88-101. PubMed ID: 27989946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination.
    Wu L; Wang S; Tian L; Wu L; Li M; Zhang J; Li P; Zhang W; Chen Y
    J Proteomics; 2018 Apr; 177():75-87. PubMed ID: 29454112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morpho-physiological and proteomic responses to water stress in two contrasting tobacco varieties.
    Chen Z; Xu J; Wang F; Wang L; Xu Z
    Sci Rep; 2019 Dec; 9(1):18523. PubMed ID: 31811189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes in physiological and biochemical properties of flue-cured tobacco of different leaf ages during flue-curing and their effects on yield and quality.
    Chen Y; Ren K; He X; Gong J; Hu X; Su J; Jin Y; Zhao Z; Zhu Y; Zou C
    BMC Plant Biol; 2019 Dec; 19(1):555. PubMed ID: 31842767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence.
    Das PP; Lin Q; Wong SM
    J Proteomics; 2019 Mar; 194():191-199. PubMed ID: 30503828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.).
    Zheng X; Fan S; Wei H; Tao C; Ma Q; Ma Q; Zhang S; Li H; Pang C; Yu S
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28926933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolome of flue-cured tobacco is significantly affected by the presence of leaf stem.
    Li Y; Liu F; Sun S; Xiang Y; Jiang X; He J
    BMC Plant Biol; 2023 Feb; 23(1):89. PubMed ID: 36782114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold stress in the harvest period: effects on tobacco leaf quality and curing characteristics.
    Li Y; Ren K; Hu M; He X; Gu K; Hu B; Su J; Jin Y; Gao W; Yang D; Li F; Zou C
    BMC Plant Biol; 2021 Mar; 21(1):131. PubMed ID: 33685400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway.
    Chakrabarti M; Bowen SW; Coleman NP; Meekins KM; Dewey RE; Siminszky B
    Plant Mol Biol; 2008 Mar; 66(4):415-27. PubMed ID: 18196465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hydrogen peroxide is involved in regulation of tobacco leaf senescence].
    Jiang L; Kong XW; Cao SQ; Zhang RX
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2009 Feb; 42(1):82-8. PubMed ID: 19306693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of low potassium stress-responsive proteins in tobacco (Nicotiana tabacum) seedling roots using an iTRAQ-based analysis.
    Ren XL; Li LQ; Xu L; Guo YS; Lu LM
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean.
    Wei J; Liu X; Li L; Zhao H; Liu S; Yu X; Shen Y; Zhou Y; Zhu Y; Shu Y; Ma H
    BMC Plant Biol; 2020 Mar; 20(1):127. PubMed ID: 32216758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.