BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32454381)

  • 1. Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos.
    Meng S; Delnat V; Stoks R
    Environ Pollut; 2020 Oct; 265(Pt A):114824. PubMed ID: 32454381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multigenerational effects modify the tolerance of mosquito larvae to chlorpyrifos but not to a heat spike and do not change their synergism.
    Meng S; Delnat V; Stoks R
    Environ Pollut; 2022 Jan; 292(Pt A):118333. PubMed ID: 34637829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Exposure Order Strongly Modifies How a Heat Spike Increases Pesticide Toxicity.
    Meng S; Delnat V; Stoks R
    Environ Sci Technol; 2020 Sep; 54(18):11476-11484. PubMed ID: 32804496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model.
    Delnat V; Janssens L; Stoks R
    Aquat Toxicol; 2019 Jun; 211():38-45. PubMed ID: 30921756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes.
    Delnat V; Tran TT; Verheyen J; Van Dinh K; Janssens L; Stoks R
    Sci Total Environ; 2019 Nov; 690():1237-1244. PubMed ID: 31470486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming.
    Meng S; Tran TT; Delnat V; Stoks R
    Environ Pollut; 2021 Sep; 284():117217. PubMed ID: 33915393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate.
    Verheyen J; Stoks R
    Chemosphere; 2020 Mar; 243():125369. PubMed ID: 31765902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology.
    Verheyen J; Stoks R
    Environ Pollut; 2019 May; 248():209-218. PubMed ID: 30798022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2018 Feb; 233():226-234. PubMed ID: 29096295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate.
    Delnat V; Verborgt J; Janssens L; Stoks R
    Chemosphere; 2021 Jan; 263():128114. PubMed ID: 33297107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of warming on pesticide toxicity is reversed between developmental stages in the mosquito Culex pipiens.
    Tran TT; Dinh Van K; Janssens L; Stoks R
    Sci Total Environ; 2020 May; 717():134811. PubMed ID: 31836210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong differences between two congeneric species in sensitivity to pesticides in a warming world.
    de Beeck LO; Verheyen J; Stoks R
    Sci Total Environ; 2018 Mar; 618():60-69. PubMed ID: 29126027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher mean and fluctuating temperatures jointly determine the impact of the pesticide chlorpyrifos on the growth rate and leaf consumption of a freshwater isopod.
    Theys C; Verheyen J; Tüzün N; Stoks R
    Chemosphere; 2021 Jun; 273():128528. PubMed ID: 33092821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes.
    Janssens L; Dinh Van K; Stoks R
    Aquat Toxicol; 2014 Mar; 148():74-82. PubMed ID: 24463491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment.
    Dinh KV; Janssens L; Stoks R
    Glob Chang Biol; 2016 Oct; 22(10):3361-72. PubMed ID: 27390895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2017 May; 224():714-721. PubMed ID: 28040340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of larval exposure to a heat wave and chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans.
    Arambourou H; Stoks R
    Chemosphere; 2015 Jun; 128():148-54. PubMed ID: 25698293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour.
    Tran TT; Janssens L; Dinh KV; Stoks R
    Environ Pollut; 2019 Feb; 245():307-315. PubMed ID: 30447473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation of the interaction type between two stressors in a single population: From antagonism to synergism when combining a heat spike and a pesticide.
    Delnat V; Verheyen J; Van Hileghem I; Stoks R
    Environ Pollut; 2022 Sep; 308():119654. PubMed ID: 35738518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute warming increases pesticide toxicity more than transgenerational warming by reducing the energy budget.
    Meng S; Tran TT; Van Dinh K; Delnat V; Stoks R
    Sci Total Environ; 2022 Jan; 805():150373. PubMed ID: 34818764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.