These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32454447)

  • 1. Enhanced Optical Fiber for Distributed Acoustic Sensing beyond the Limits of Rayleigh Backscattering.
    Westbrook PS; Feder KS; Kremp T; Monberg EM; Wu H; Zhu B; Huang L; Simoff DA; Shenk S; Handerek VA; Karimi M; Nkansah A; Yau A
    iScience; 2020 Jun; 23(6):101137. PubMed ID: 32454447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C.
    Bulot P; Bernard R; Cieslikiewicz-Bouet M; Laffont G; Douay M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors.
    Redding B; Murray MJ; Donko A; Beresna M; Masoudi A; Brambilla G
    Opt Express; 2020 May; 28(10):14638-14647. PubMed ID: 32403501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.
    Yan A; Huang S; Li S; Chen R; Ohodnicki P; Buric M; Lee S; Li MJ; Chen KP
    Sci Rep; 2017 Aug; 7(1):9360. PubMed ID: 28839282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Progress in Distributed Acoustic Sensing Techniques.
    Shang Y; Sun M; Wang C; Yang J; Du Y; Yi J; Zhao W; Wang Y; Zhao Y; Ni J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Rayleigh Scattering in UWFBG Array-Based Φ-OTDR and Its Suppression Method.
    Wang F; Yu Y; Hong R; Tian R; Zhang Y; Zhang X
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lumped Rayleigh reflectors.
    Gabai H; Shpatz I; Eyal A
    Opt Lett; 2017 Nov; 42(21):4529-4532. PubMed ID: 29088205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.
    Liehr S; Breithaupt M; Krebber K
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks.
    Peng Z; Wen H; Jian J; Gribok A; Wang M; Huang S; Liu H; Mao ZH; Chen KP
    Sci Rep; 2020 Dec; 10(1):21014. PubMed ID: 33273503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber.
    Lu Z; Feng T; Li F; Yao XS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute spectral backscatter measurements of large-core multimode PMMA polymer optical fibers.
    Dengler SA; Engelbrecht R; Schmauss B
    Opt Express; 2021 Oct; 29(21):34629-34640. PubMed ID: 34809248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed Static and Dynamic Strain Measurements in Polymer Optical Fibers by Rayleigh Scattering.
    Coscetta A; Catalano E; Cerri E; Oliveira R; Bilro L; Zeni L; Cennamo N; Minardo A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of Scattering-Level Multiplexing (SLMux) in Distributed Fiber-Optic Backscatter Reflectometry Physical Sensors.
    Tosi D; Molardi C; Blanc W; Paixão T; Antunes P; Marques C
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing.
    Beisenova A; Issatayeva A; Iordachita I; Blanc W; Molardi C; Tosi D
    Opt Express; 2019 Aug; 27(16):22074-22087. PubMed ID: 31510502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers.
    Fuertes V; Grégoire N; Labranche P; Gagnon S; Wang R; Ledemi Y; LaRochelle S; Messaddeq Y
    Sci Rep; 2021 Apr; 11(1):9116. PubMed ID: 33907246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ROGUE: a novel, noise-generated random grating.
    Monet F; Loranger S; Lambin-Iezzi V; Drouin A; Kadoury S; Kashyap R
    Opt Express; 2019 May; 27(10):13895-13909. PubMed ID: 31163847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 152 km-range single-ended distributed acoustic sensor based on inline optical amplification and a micromachined enhanced-backscattering fiber.
    Masoudi A; Beresna M; Brambilla G
    Opt Lett; 2021 Feb; 46(3):552-555. PubMed ID: 33528407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rayleigh-Based Distributed Optical Fiber Sensing.
    Palmieri L; Schenato L; Santagiustina M; Galtarossa A
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Distributed Fiber Acoustic Sensing with Φ-OTDR.
    Wang Z; Lu B; Ye Q; Cai H
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Modelling of a Distributed Acoustic Sensor Based on Ultra-Low Loss-Enhanced Backscattering Fibers.
    van Putten LD; Masoudi A; Snook J; Brambilla G
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.