These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32454554)

  • 1. High accuracy least-squares solutions of nonlinear differential equations.
    Mortari D; Johnston H; Smith L
    J Comput Appl Math; 2019 May; 352():293-307. PubMed ID: 32454554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Least-Squares Solutions of Eighth-Order Boundary Value Problems Using the Theory of Functional Connections.
    Johnston H; Leake C; Mortari D
    Mathematics (Basel); 2020 Mar; 8(3):397. PubMed ID: 32477924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytically Embedding Differential Equation Constraints into Least Squares Support Vector Machines Using the Theory of Functional Connections.
    Leake C; Johnston H; Smith L; Mortari D
    Mach Learn Knowl Extr; 2019 Dec; 1(4):1058-1083. PubMed ID: 32478282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate solutions to ordinary differential equations using least squares support vector machines.
    Mehrkanoon S; Falck T; Suykens JA
    IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1356-67. PubMed ID: 24807921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new multistage technique for approximate analytical solution of nonlinear differential equations.
    Akindeinde SO
    Heliyon; 2020 Oct; 6(10):e05188. PubMed ID: 33088955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation.
    Caboussat A; Glowinski R; Gourzoulidis D
    J Sci Comput; 2022; 93(1):15. PubMed ID: 36035316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations.
    Vitanov NK
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel-Efficient Powered Descent Guidance on Large Planetary Bodies via Theory of Functional Connections.
    Johnston H; Schiassi E; Furfaro R; Mortari D
    J Astronaut Sci; 2020; 67(4):. PubMed ID: 33060863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid collocation method for solving highly nonlinear boundary value problems.
    Adewumi AO; Akindeinde SO; Aderogba AA; Ogundare BS
    Heliyon; 2020 Mar; 6(3):e03553. PubMed ID: 32195390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct application of Padé approximant for solving nonlinear differential equations.
    Vazquez-Leal H; Benhammouda B; Filobello-Nino U; Sarmiento-Reyes A; Jimenez-Fernandez VM; Garcia-Gervacio JL; Huerta-Chua J; Morales-Mendoza LJ; Gonzalez-Lee M
    Springerplus; 2014; 3():563. PubMed ID: 25332863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The novel Leal-polynomials for the multi-expansive approximation of nonlinear differential equations.
    Vazquez-Leal H; Sandoval-Hernandez MA; Filobello-Nino U; Huerta-Chua J
    Heliyon; 2020 Apr; 6(4):e03695. PubMed ID: 32322709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient numerical method for distributed-loop models of the urine concentrating mechanism.
    Layton AT; Layton HE
    Math Biosci; 2003 Feb; 181(2):111-32. PubMed ID: 12445757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
    Mall S; Chakraverty S
    Neural Comput; 2016 Aug; 28(8):1574-98. PubMed ID: 27348738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-based initial guess for estimating parameters in systems of ordinary differential equations.
    Dattner I
    Biometrics; 2015 Dec; 71(4):1176-84. PubMed ID: 26172865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks for solving ordinary and partial differential equations.
    Lagaris IE; Likas A; Fotiadis DI
    IEEE Trans Neural Netw; 1998; 9(5):987-1000. PubMed ID: 18255782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature inspired computational technique for the numerical solution of nonlinear singular boundary value problems arising in physiology.
    Malik SA; Qureshi IM; Amir M; Haq I
    ScientificWorldJournal; 2014; 2014():837021. PubMed ID: 24672381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laplace transform homotopy perturbation method for the approximation of variational problems.
    Filobello-Nino U; Vazquez-Leal H; Rashidi MM; Sedighi HM; Perez-Sesma A; Sandoval-Hernandez M; Sarmiento-Reyes A; Contreras-Hernandez AD; Pereyra-Diaz D; Hoyos-Reyes C; Jimenez-Fernandez VM; Huerta-Chua J; Castro-Gonzalez F; Laguna-Camacho JR
    Springerplus; 2016; 5():276. PubMed ID: 27006884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions.
    Zheng H; Huang Y; Huang Z; Hao W; Lin G
    J Comput Phys; 2024 Mar; 500():. PubMed ID: 38283188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximate series solution of nonlinear singular boundary value problems arising in physiology.
    Singh R; Kumar J; Nelakanti G
    ScientificWorldJournal; 2014; 2014():945872. PubMed ID: 24707221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.