These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32454924)

  • 1. The mechanical responses of advecting cells in confined flow.
    Connolly S; Newport D; McGourty K
    Biomicrofluidics; 2020 May; 14(3):031501. PubMed ID: 32454924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell specific variation in viability in suspension in in vitro Poiseuille flow conditions.
    Connolly S; Newport D; McGourty K
    Sci Rep; 2021 Jul; 11(1):13997. PubMed ID: 34234155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro inertial positions and viability of cells in suspension under different in vivo flow conditions.
    Connolly S; McGourty K; Newport D
    Sci Rep; 2020 Feb; 10(1):1711. PubMed ID: 32015362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cell elastic modulus on inertial positions in Poiseuille microflows.
    Connolly S; McGourty K; Newport D
    Biophys J; 2021 Mar; 120(5):855-865. PubMed ID: 33545102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels.
    Petruzzellis I; Martínez Vázquez R; Caragnano S; Gaudiuso C; Osellame R; Ancona A; Volpe A
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of red blood cells under flow in highly confined microchannels. II. Effect of focusing and confinement.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7207-17. PubMed ID: 25068313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial migration of cancer cells in blood flow in microchannels.
    Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Yoshimoto T; Matsuki N; Yamaguchi T
    Biomed Microdevices; 2012 Feb; 14(1):25-33. PubMed ID: 21898009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput-per-footprint inertial focusing.
    Ciftlik AT; Ettori M; Gijs MA
    Small; 2013 Aug; 9(16):2764-73, 2828. PubMed ID: 23420756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking blood and lymphatic vasculatures using microfluidic systems.
    Hall E; Mendiola K; Lightsey NK; Hanjaya-Putra D
    Biomicrofluidics; 2024 May; 18(3):031502. PubMed ID: 38726373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphatic Vessel on a Chip with Capability for Exposure to Cyclic Fluidic Flow.
    Fathi P; Holland G; Pan D; Esch MB
    ACS Appl Bio Mater; 2020 Oct; 3(10):6697-6707. PubMed ID: 35019335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell force spectroscopy of fluid flow-tuned cell adhesion for dissecting hemodynamics in tumor metastasis.
    Wei J; Yang Y; Li M
    Nanoscale; 2023 Dec; 16(1):360-372. PubMed ID: 38063483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-induced stress on adherent cells in microfluidic devices.
    Shemesh J; Jalilian I; Shi A; Heng Yeoh G; Knothe Tate ML; Ebrahimi Warkiani M
    Lab Chip; 2015 Nov; 15(21):4114-27. PubMed ID: 26334370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip".
    Bakuova N; Toktarkan S; Dyussembinov D; Azhibek D; Rakhymzhanov A; Kostas K; Kulsharova G
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staged Inertial Microfluidic Focusing for Complex Fluid Enrichment.
    Reece AE; Kaastrup K; Sikes HD; Oakey J
    RSC Adv; 2015; 5():53857-53864. PubMed ID: 26185618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.