BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32454925)

  • 1. Closed-loop feedback control of microbubble diameter from a flow-focusing microfluidic device.
    Xie Y; Dixon AJ; Rickel JMR; Klibanov AL; Hossack JA
    Biomicrofluidics; 2020 May; 14(3):034101. PubMed ID: 32454925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop feedback control of microfluidic cell manipulation
    Wang N; Liu R; Asmare N; Chu CH; Civelekoglu O; Sarioglu AF
    Lab Chip; 2021 May; 21(10):1916-1928. PubMed ID: 34008660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbubble generation in a co-flow device operated in a new regime.
    Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM
    Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spark-generated microbubble cell sorter for microfluidic flow cytometry.
    Zhao J; You Z
    Cytometry A; 2018 Feb; 93(2):222-231. PubMed ID: 29346713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation.
    Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets.
    Miller E; Rotea M; Rothstein JP
    Lab Chip; 2010 May; 10(10):1293-301. PubMed ID: 20445883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second.
    van Elburg B; Collado-Lara G; Bruggert GW; Segers T; Versluis M; Lajoinie G
    Rev Sci Instrum; 2021 Mar; 92(3):035110. PubMed ID: 33820052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T-junction Microfluidic Device.
    Khan AH; Ganguli A; Edirisinghe M; Dalvi SV
    Langmuir; 2023 Dec; 39(51):18971-18982. PubMed ID: 38087401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Speed Generation of Microbubbles with Constant Cumulative Production in a Glass Capillary Microfluidic Bubble Generator.
    Yu J; Cheng W; Ni J; Li C; Su X; Yan H; Bao F; Hou L
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
    Salari A; Gnyawali V; Griffiths IM; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Nov; 13(46):8796-8806. PubMed ID: 29135012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise measurement and control of the pressure-driven flows for microfluidic systems.
    Zeng W; Fu H
    Electrophoresis; 2020 Jun; 41(10-11):852-859. PubMed ID: 31054174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2019 May; 19(10):1887. PubMed ID: 31026008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
    Ryu J; Kim J; Han KH
    Lab Chip; 2023 Mar; 23(7):1896-1904. PubMed ID: 36877075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device.
    Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M
    Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired preparation of alginate nanoparticles using microbubble bursting.
    Elsayed M; Huang J; Edirisinghe M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():132-9. PubMed ID: 25491969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.