These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32454925)

  • 21. Honey, I shrunk the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles.
    Gnyawali V; Moon BU; Kieda J; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Jun; 13(22):4011-4016. PubMed ID: 28379267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm.
    Cao Q; Wu T; Chen X; Gong Z; Wen A
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Microfluidic Platform for Precision Small-volume Sample Processing and Its Use to Size Separate Biological Particles with an Acoustic Microdevice.
    Fong EJ; Huang C; Hamilton J; Benett WJ; Bora M; Burklund A; Metz TR; Shusteff M
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26651055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac-dc Electric Fields.
    Kothandaraman A; Alfadhl Y; Qureshi M; Edirisinghe M; Ventikos Y
    Langmuir; 2019 Aug; 35(31):10052-10060. PubMed ID: 30995839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroBubble activated acoustic cell sorting.
    Faridi MA; Ramachandraiah H; Iranmanesh I; Grishenkov D; Wiklund M; Russom A
    Biomed Microdevices; 2017 Jun; 19(2):23. PubMed ID: 28374278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells.
    Sajeesh P; Manasi S; Doble M; Sen AK
    Lab Chip; 2015; 15(18):3738-48. PubMed ID: 26235533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling thread formation during tipstreaming through an active feedback control loop.
    Moyle TM; Walker LM; Anna SL
    Lab Chip; 2013 Dec; 13(23):4534-41. PubMed ID: 24100760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photothermally generated bubble on fiber (BoF) for precise sensing and control of liquid flow along a microfluidic channel.
    Ma J; Wang G; Jin L; Oh K; Guan BO
    Opt Express; 2019 Jul; 27(14):19768-19777. PubMed ID: 31503732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel microfluidic chip for assessing dynamic adhesion behavior of cell-targeting microbubbles.
    Yan F; Li X; Jiang C; Jin Q; Zhang Z; Shandas R; Wu J; Liu X; Zheng H
    Ultrasound Med Biol; 2014 Jan; 40(1):148-57. PubMed ID: 24210864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography.
    Dong B; Chen S; Zhou F; Chan CH; Yi J; Zhang HF; Sun C
    Sci Rep; 2016 Sep; 6():33250. PubMed ID: 27619202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time Optical Imaging of Microbubble Destruction with an Acoustic Lens Attached Ultrasonic Diagnostic Probe in Microfluidic Capillary Models.
    Oh MT; Kim HN; Ko HS; Lee S; Kim JH; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6068-6071. PubMed ID: 30441720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Yielding Microbubble Production Method.
    Fiabane J; Prentice P; Pancholi K
    Biomed Res Int; 2016; 2016():3572827. PubMed ID: 27034935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbubble destruction during intravenous administration: a preliminary study.
    Barrack T; Stride E
    Ultrasound Med Biol; 2009 Mar; 35(3):515-22. PubMed ID: 19110367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical feedback control loop for the precise and robust acoustic focusing of cells, micro- and nanoparticles.
    Harshbarger CL; Gerlt MS; Ghadamian JA; Bernardoni DC; Snedeker JG; Dual J
    Lab Chip; 2022 Jul; 22(15):2810-2819. PubMed ID: 35843222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production rate and diameter analysis of spherical monodisperse microbubbles from two-dimensional, expanding-nozzle flow-focusing microfluidic devices.
    Wang S; Dhanaliwala AH; Chen JL; Hossack JA
    Biomicrofluidics; 2013; 7(1):14103. PubMed ID: 24403995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo imaging of microfluidic-produced microbubbles.
    Dhanaliwala AH; Dixon AJ; Lin D; Chen JL; Klibanov AL; Hossack JA
    Biomed Microdevices; 2015 Feb; 17(1):23. PubMed ID: 25663444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time detection, control, and sorting of microfluidic droplets.
    Niu X; Zhang M; Peng S; Wen W; Sheng P
    Biomicrofluidics; 2007 Oct; 1(4):44101. PubMed ID: 19693400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.