BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32455218)

  • 1. Open-Circuit Voltage (
    Borbón S; Lugo S; Pourjafari D; Pineda Aguilar N; Oskam G; López I
    ACS Omega; 2020 May; 5(19):10977-10986. PubMed ID: 32455218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of Potassium Water Glass on Photoelectrodes and Its Effects on the Performance of Dye-Sensitized Solar Cells.
    Oh JH; Lee SJ; Kim DH; Sung SJ; Kang CS; Han YS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8854-8. PubMed ID: 26726606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Photovoltaic Properties of Dye-Sensitized Solar Cells with KNO3-Modified Photoelectrodes.
    Oh JH; Lee SJ; Kim DH; Sung SJ; Lee MH; Han YS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8859-63. PubMed ID: 26726607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F; Zhang P; Wu X; Fu L; Zhang J; Xu D
    Chemphyschem; 2012 Nov; 13(16):3731-7. PubMed ID: 22899421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequences of changes in the ZnO trap distribution on the performance of dye-sensitized solar cells.
    Falgenhauer J; Fiehler F; Richter C; Rudolph M; Schlettwein D
    Phys Chem Chem Phys; 2017 Jun; 19(24):16159-16168. PubMed ID: 28604856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Performance of Dye-Sensitized Solar Cells with a Gold-Nanoflowers Box.
    Zhang L; Wang ZS
    Chem Asian J; 2016 Nov; 11(22):3283-3289. PubMed ID: 27726303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells.
    Villanueva-Cab J; Olalde-Velasco P; Romero-Contreras A; Zhuo Z; Pan F; Rodil SE; Yang W; Pal U
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31374-31383. PubMed ID: 30129358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods.
    Chen W; Qiu Y; Zhong Y; Wong KS; Yang S
    J Phys Chem A; 2010 Mar; 114(9):3127-38. PubMed ID: 19957989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-layer coating of SrCO3/TiO2 on nanoporous TiO2 for efficient dye-sensitized solar cells.
    Wang S; Zhang X; Zhou G; Wang ZS
    Phys Chem Chem Phys; 2012 Jan; 14(2):816-22. PubMed ID: 22108906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased photovoltaic performance by the optimized TiClI4 and AlCl3 surface treatment in dye-sensitized solar cells.
    Oh JH; Kim DH; Lee SJ; Kwak G; Han YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9247-52. PubMed ID: 25971045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of Sr-Incorporated TiO2 Layer on the Photovoltaic Properties of Dye-Sensitized Solar Cells.
    Kim ES; Kim DH; Lee SJ; Han YS
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2760-4. PubMed ID: 27455704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doped In₂O₃ inverse opals as photoanode for dye sensitized solar cells.
    Kong L; Dai Q; Miao C; Xu L; Song H
    J Colloid Interface Sci; 2015 Jul; 450():196-201. PubMed ID: 25823724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of dye-sensitized solar cells with TiO2/graphene/TiO2 sandwich structure.
    Chen LC; Hsu CH; Chan PS; Zhang X; Huang CJ
    Nanoscale Res Lett; 2014; 9(1):380. PubMed ID: 25136284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.
    Bai L; Li M; Liu X; Luoshan M; Zhang F; Guo K; Zhu Y; Sun B; Zhao X
    Nanotechnology; 2016 Oct; 27(41):415202. PubMed ID: 27595326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of morphology and defect density in zinc oxide for improved dye-sensitized solar cells.
    Kim SA; Abbas MA; Lee L; Kang B; Kim H; Bang JH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30475-30483. PubMed ID: 27782242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Electronic, Optical, and Structural Features in Pseudo-3D Mesoporous TiO
    Negi SS
    ACS Omega; 2018 Feb; 3(2):1645-1652. PubMed ID: 31458484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AuNRs attached TiO
    Bagheri N; Hassanzadeh J; Al-Ruqeishi ZB; Manan NSA; Al Lawati HAJ; Abou-Zied OK
    Phys Chem Chem Phys; 2023 Jul; 25(28):19230-19238. PubMed ID: 37431763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.