These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32455224)

  • 1. Theoretical and Experimental Study of Compression Effects on Structural Relaxation of Glass-Forming Liquids.
    Phan AD; Jedrzejowska A; Paluch M; Wakabayashi K
    ACS Omega; 2020 May; 5(19):11035-11042. PubMed ID: 32455224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation.
    Phan AD; Koperwas K; Paluch M; Wakabayashi K
    Phys Chem Chem Phys; 2020 Nov; 22(42):24365-24371. PubMed ID: 33084661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of Structural and Secondary Relaxation in Amorphous Drugs under Compression.
    Phan AD; Wakabayashi K
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32093033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Young's Modulus of Active Pharmaceutical Ingredients by Relaxation Dynamics at Elevated Pressures.
    Phan AD
    J Phys Chem B; 2020 Nov; 124(46):10500-10506. PubMed ID: 33164514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study.
    Phan AD; Wakabayashi K; Paluch M; Lam VD
    RSC Adv; 2019 Dec; 9(69):40214-40221. PubMed ID: 35542647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Model for the Structural Relaxation Time in Coamorphous Drugs.
    Phan AD; Knapik-Kowalczuk J; Paluch M; Hoang TX; Wakabayashi K
    Mol Pharm; 2019 Jul; 16(7):2992-2998. PubMed ID: 31095393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastically Collective Nonlinear Langevin Equation Theory of Glass-Forming Liquids: Transient Localization, Thermodynamic Mapping, and Cooperativity.
    Phan AD; Schweizer KS
    J Phys Chem B; 2018 Sep; 122(35):8451-8461. PubMed ID: 30091919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test of the fractional Debye-Stokes-Einstein equation in low-molecular-weight glass-forming liquids under condition of high compression.
    Bielowka SH; Psurek T; Ziolo J; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):062301. PubMed ID: 11415149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films.
    Phan AD
    J Phys Chem B; 2022 Feb; 126(7):1609-1614. PubMed ID: 35166111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics-Structure-Dynamics Correlations and Nonuniversal Effects in the Elastically Collective Activated Hopping Theory of Glass-Forming Liquids.
    Mei B; Zhou Y; Schweizer KS
    J Phys Chem B; 2020 Jul; 124(28):6121-6131. PubMed ID: 32633526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling behavior of the alpha relaxation in fragile glass-forming liquids under conditions of high compression.
    Paluch M; Hensel-Bielowka S; Ziolo J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):526-31. PubMed ID: 11046293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt.
    Xu WS; Douglas JF; Freed KF
    ACS Macro Lett; 2016 Dec; 5(12):1375-1380. PubMed ID: 35651209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization of supercooled fenofibrate studied at ambient and elevated pressures.
    Szklarz G; Adrjanowicz K; Knapik-Kowalczuk J; Jurkiewicz K; Paluch M
    Phys Chem Chem Phys; 2017 Apr; 19(15):9879-9888. PubMed ID: 28357419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design rules for glass formation from model molecules designed by a neural-network-biased genetic algorithm.
    Meenakshisundaram V; Hung JH; Simmons DS
    Soft Matter; 2019 Oct; 15(39):7795-7808. PubMed ID: 31515550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the temperature and pressure dependence of dielectric relaxation processes in ionic liquids.
    Pabst F; Wojnarowska Z; Paluch M; Blochowicz T
    Phys Chem Chem Phys; 2021 Jul; 23(26):14260-14275. PubMed ID: 34159979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent onset of shear thinning in supercooled glass-forming network liquids.
    Zhu W; Xia Y; Aitken BG; Sen S
    J Chem Phys; 2021 Mar; 154(9):094507. PubMed ID: 33685144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chemistry, interfacial width, and non-isothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2017 May; 146(20):203301. PubMed ID: 28571330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.