These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32455241)

  • 1. Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells.
    Hirokawa S; Teshima H; Solís-Fernández P; Ago H; Tomo Y; Li QY; Takahashi K
    ACS Omega; 2020 May; 5(19):11180-11185. PubMed ID: 32455241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy.
    Yang J; Alam SB; Yu L; Chan E; Zheng H
    Micron; 2019 Jan; 116():22-29. PubMed ID: 30265880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of water presence in graphene liquid cells.
    Keskin S; Pawell C; de Jonge N
    Micron; 2021 Oct; 149():103109. PubMed ID: 34332298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels.
    Ghodsi SM; Anand S; Shahbazian-Yassar R; Shokuhfar T; Megaridis CM
    ACS Nano; 2019 Apr; 13(4):4677-4685. PubMed ID: 30908009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for
    Jokisaari JR; Hu X; Mukherjee A; Uskoković V; Klie RF
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy.
    Yashima Y; Yamazaki T; Kimura Y
    ACS Omega; 2024 Sep; 9(38):39914-39924. PubMed ID: 39346859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pinning in a Contact and Noncontact Manner: Direct Observation of a Three-Phase Contact Line Using Graphene Liquid Cells.
    Hirokawa S; Teshima H; Solís-Fernández P; Ago H; Li QY; Takahashi K
    Langmuir; 2021 Oct; 37(42):12271-12277. PubMed ID: 34644074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.
    Shin D; Park JB; Kim YJ; Kim SJ; Kang JH; Lee B; Cho SP; Hong BH; Novoselov KS
    Nat Commun; 2015 Feb; 6():6068. PubMed ID: 25641584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Sealed Flow Cells for
    Dunn G; Adiga VP; Pham T; Bryant C; Horton-Bailey DJ; Belling JN; LaFrance B; Jackson JA; Barzegar HR; Yuk JM; Aloni S; Crommie MF; Zettl A
    ACS Nano; 2020 Aug; 14(8):9637-9643. PubMed ID: 32806056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film.
    Li JY; Wang ZB; Xu ZP; Xiao DD; Gu L; Wang H
    J Phys Chem B; 2024 Apr; 128(15):3732-3741. PubMed ID: 38568211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy.
    Hauwiller MR; Ondry JC; Chan CM; Khandekar P; Yu J; Alivisatos AP
    J Am Chem Soc; 2019 Mar; 141(10):4428-4437. PubMed ID: 30777753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy.
    Textor M; de Jonge N
    Nano Lett; 2018 Jun; 18(6):3313-3321. PubMed ID: 29799208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the Topology of Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement.
    Hou Z; Zhang Q; Xu G; Zhang S; Gong C; Ding B; Li H; Xu F; Yao Y; Liu E; Wu G; Zhang XX; Wang W
    ACS Nano; 2019 Jan; 13(1):922-929. PubMed ID: 30605309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment.
    Bartali R; Lamberti A; Bianco S; Pirri CF; Tripathi M; Gottardi G; Speranza G; Iacob E; Pugno N; Laidani N
    Langmuir; 2017 Nov; 33(45):12865-12872. PubMed ID: 29043815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alveolar surface network: a new anatomy and its physiological significance.
    Scarpelli EM
    Anat Rec; 1998 Aug; 251(4):491-527. PubMed ID: 9713987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the dynamics of biological macromolecules using Au nanoparticle-DNA artificial molecules.
    Chen Q; Smith JM; Rasool HI; Zettl A; Alivisatos AP
    Faraday Discuss; 2014; 175():203-14. PubMed ID: 25430862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.