These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32455605)

  • 1. Autofluorescence in Plants.
    Donaldson L
    Molecules; 2020 May; 25(10):. PubMed ID: 32455605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay.
    Bayle V; Nussaume L; Bhat RA
    Plant Physiol; 2008 Sep; 148(1):51-60. PubMed ID: 18621983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localizing Molecules in Plant Cell Walls Using Fluorescence Microscopy.
    Donaldson LA
    Methods Mol Biol; 2023; 2566():243-259. PubMed ID: 36152257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET-SLiM on native autofluorescence: a fast and reliable method to study interactions between fluorescent probes and lignin in plant cell wall.
    Terryn C; Paës G; Spriet C
    Plant Methods; 2018; 14():74. PubMed ID: 30154910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood.
    Donaldson LA; Radotic K
    J Microsc; 2013 Aug; 251(2):178-87. PubMed ID: 23763341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein.
    Gohil K; Wu SY; Takahashi-Yamashiro K; Shen Y; Campbell RE
    ACS Sens; 2023 Feb; 8(2):587-597. PubMed ID: 36693235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cytoplasmic streaming by cytochalasin D is superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged Golgi components.
    Poulsen CP; Vereb G; Geshi N; Schulz A
    Cytometry A; 2013 Sep; 83(9):830-8. PubMed ID: 23520174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging and Spectroscopy of Natural Fluorophores in Pine Needles.
    Donaldson L; Williams N
    Plants (Basel); 2018 Feb; 7(1):. PubMed ID: 29393922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins.
    Joosen L; Hink MA; Gadella TW; Goedhart J
    J Microsc; 2014 Dec; 256(3):166-76. PubMed ID: 25179491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET-FLIM applications in plant systems.
    Bücherl CA; Bader A; Westphal AH; Laptenok SP; Borst JW
    Protoplasma; 2014 Mar; 251(2):383-94. PubMed ID: 24390247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Interactions between Fluorescent Probes and Lignin in Plant Sections by sFLIM Based on Native Autofluorescence.
    Terryn C; Habrant A; Paës G; Spriet C
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 31957743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safranine fluorescent staining of wood cell walls.
    Bond J; Donaldson L; Hill S; Hitchcock K
    Biotech Histochem; 2008 Jun; 83(3-4):161-71. PubMed ID: 18802812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances using green and red fluorescent protein variants.
    Müller-Taubenberger A; Anderson KI
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution.
    Donaldson L; Radotić K; Kalauzi A; Djikanović D; Jeremić M
    J Struct Biol; 2010 Jan; 169(1):106-15. PubMed ID: 19747548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free in situ imaging of lignification in plant cell walls.
    Schmidt M; Perera P; Schwartzberg AM; Adams PD; Schuck PJ
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21085100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins.
    Akrap N; Seidel T; Barisas BG
    Anal Biochem; 2010 Jul; 402(1):105-6. PubMed ID: 20347671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
    George Abraham B; Sarkisyan KS; Mishin AS; Santala V; Tkachenko NV; Karp M
    PLoS One; 2015; 10(8):e0134436. PubMed ID: 26237400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.