BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32455690)

  • 1. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.
    Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.
    Darwish MSA; Kim H; Lee H; Ryu C; Lee JY; Yoon J
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31426427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of cobalt ferrite magnetic nanoparticle as a theranostic agent: MRI and hyperthermia.
    Mohammadi Z; Montazerabadi A; Irajirad R; Attaran N; Abedi H; Mousavi Shaegh SA; Sazgarnia A
    MAGMA; 2023 Oct; 36(5):749-766. PubMed ID: 36877425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.
    Makridis A; Tziomaki M; Topouridou K; Yavropoulou MP; Yovos JG; Kalogirou O; Samaras T; Angelakeris M
    Int J Hyperthermia; 2016 Nov; 32(7):778-85. PubMed ID: 27442884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.
    Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles.
    Girgis E; Wahsh MM; Othman AG; Bandhu L; Rao K
    Nanoscale Res Lett; 2011 Jul; 6(1):460. PubMed ID: 21774807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjusting the Néel relaxation time of Fe
    Fabris F; Lohr J; Lima E; de Almeida AA; Troiani HE; Rodríguez LM; Vásquez Mansilla M; Aguirre MH; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler EL
    Nanotechnology; 2020 Nov; 32(6):065703. PubMed ID: 33210620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe
    Caizer C; Caizer IS; Racoviceanu R; Watz CG; Mioc M; Dehelean CA; Bratu T; Soica C
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profound Interfacial Effects in CoFe
    Polishchuk D; Nedelko N; Solopan S; Ślawska-Waniewska A; Zamorskyi V; Tovstolytkin A; Belous A
    Nanoscale Res Lett; 2018 Mar; 13(1):67. PubMed ID: 29492755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific Absorption Rate Dependency on the Co
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Tekin HO; Khourshid H; Kumar H; Mallya A; Sambasivam S; Obaidat IM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34066997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.
    Caizer IS; Caizer C
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.