These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32455755)

  • 1. In Vitro Evaluation of Iron-Induced Salivary Lipid Oxidation Associated with Exposure to Iron Nanoparticles: Application Possibilities and Limitations for Food and Exposure Sciences.
    Mirlohi S
    Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32455755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Metallic Off-Flavors in Drinking Water: Health, Consumption, and Sensory Perception.
    Mirlohi S
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH; Kung TA; Chen PJ
    Environ Pollut; 2019 Sep; 252(Pt B):1920-1932. PubMed ID: 31227347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation.
    Shi Z; Fan D; Johnson RL; Tratnyek PG; Nurmi JT; Wu Y; Williams KH
    J Contam Hydrol; 2015 Oct; 181():17-35. PubMed ID: 25841976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish.
    Chen PJ; Tan SW; Wu WL
    Environ Sci Technol; 2012 Aug; 46(15):8431-9. PubMed ID: 22747062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lipid oxidation, chelating agents, and antioxidants in metallic flavor development in the oral cavity.
    Omür-Özbek P; Dietrich AM; Duncan SE; Lee Y
    J Agric Food Chem; 2012 Mar; 60(9):2274-80. PubMed ID: 22304665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-associated variation in sensory perception of iron in drinking water and the potential for overexposure in the human population.
    Mirlohi S; Dietrich AM; Duncan SE
    Environ Sci Technol; 2011 Aug; 45(15):6575-83. PubMed ID: 21736386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.
    Ma J; He D; Collins RN; He C; Waite TD
    Water Res; 2016 Nov; 105():331-340. PubMed ID: 27639342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish.
    Chen PJ; Su CH; Tseng CY; Tan SW; Cheng CH
    Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation.
    Luna M; Gastone F; Tosco T; Sethi R; Velimirovic M; Gemoets J; Muyshondt R; Sapion H; Klaas N; Bastiaens L
    J Contam Hydrol; 2015 Oct; 181():46-58. PubMed ID: 25971233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ; Wu WL; Wu KC
    Water Res; 2013 Aug; 47(12):3899-909. PubMed ID: 23548565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: synthesis, characterization, and reactivity.
    Wang Q; Snyder S; Kim J; Choi H
    Environ Sci Technol; 2009 May; 43(9):3292-9. PubMed ID: 19534149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of common groundwater ions on the transformation and reactivity of sulfidized nanoscale zerovalent iron.
    Mangayayam MC; Alonso-de-Linaje V; Dideriksen K; Tobler DJ
    Chemosphere; 2020 Jun; 249():126137. PubMed ID: 32058137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.
    Velimirovic M; Larsson PO; Simons Q; Bastiaens L
    Chemosphere; 2013 Nov; 93(9):2040-5. PubMed ID: 23962383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transformation of hexabromocyclododecane using zerovalent iron nanoparticle aggregates.
    Tso CP; Shih YH
    J Hazard Mater; 2014 Jul; 277():76-83. PubMed ID: 24962054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells.
    Hosseini SM; Tosco T; Ataie-Ashtiani B; Simmons CT
    J Contam Hydrol; 2018 Mar; 210():50-64. PubMed ID: 29519731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.
    Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D
    Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.