These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32455977)
1. Influence of Particle Size on Toughening Mechanisms of Layered Silicates in CFRP. Hutschreuther J; Kunz R; Breu J; Altstädt V Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455977 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Mode I and Mode II Interlaminar Fracture Toughness in CNT-Enhanced CFRP under Various Temperature and Loading Rates. Yenigun B; Chaudhry MS; Gkouti E; Czekanski A Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299632 [TBL] [Abstract][Full Text] [Related]
3. Improving Interlaminar Fracture Toughness and Impact Performance of Carbon Fiber/Epoxy Laminated Composite by Using Thermoplastic Fibers. Chen L; Wu LW; Jiang Q; Tian D; Zhong Z; Wang Y; Fu HJ Molecules; 2019 Sep; 24(18):. PubMed ID: 31527461 [TBL] [Abstract][Full Text] [Related]
4. Interlaminar Mechanical Properties and Toughening Mechanism of Highly Thermally Stable Composite Modified by Polyacrylonitrile Nanofiber Films. Ma Y; Zhuang Y; Li C; Luo C; Shen X Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406222 [TBL] [Abstract][Full Text] [Related]
5. Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints. Morano C; Tao R; Alfano M; Lubineau G Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33808841 [TBL] [Abstract][Full Text] [Related]
6. Synergistic Delamination Toughening of Glass Fiber-Aluminum Laminates by Surface Treatment and Graphene Oxide Interleaf. Wu X; Ning H; Liu Y; Hu N; Liu F; Wang S; Huang K; Jiao Y; Weng S; Liu Q; Wu L Nanoscale Res Lett; 2020 Apr; 15(1):74. PubMed ID: 32266671 [TBL] [Abstract][Full Text] [Related]
8. Rubbery-Modified CFRPs with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour. Maccaferri E; Mazzocchetti L; Benelli T; Brugo TM; Zucchelli A; Giorgini L Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207669 [TBL] [Abstract][Full Text] [Related]
9. Influence of Interfacial Interaction and Composition on Fracture Toughness and Impact Properties of Carbon Fiber-Reinforced Polyethersulfone. Torokhov VG; Chukov DI; Tcherdyntsev VV; Stepashkin AA; Zadorozhnyy MY Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543465 [TBL] [Abstract][Full Text] [Related]
10. Maximizing Interlaminar Fracture Toughness in Bidirectional GFRP through Controlled CNT Heterogeneous Toughening. Zhao H; Zhang Y; Ou Y; Wu L; Li J; Yao X; Yang X; Mao D Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611269 [TBL] [Abstract][Full Text] [Related]
11. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Maccaferri E; Mazzocchetti L; Benelli T; Ortolani J; Brugo TM; Zucchelli A; Giorgini L Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559932 [TBL] [Abstract][Full Text] [Related]
12. Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades. Floreani C; Robert C; Alam P; Davies P; Ó Brádaigh CM Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919395 [TBL] [Abstract][Full Text] [Related]
13. A CNT-Toughened Strategy for In-Situ Repair of Aircraft Composite Structures. Yang T; Chu S; Liu B; Xu F; Wang B; Wu C Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363281 [TBL] [Abstract][Full Text] [Related]
14. Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils. Lan B; Liu Y; Mo S; He M; Zhai L; Fan L Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065579 [TBL] [Abstract][Full Text] [Related]
15. A Preliminary Study of the Influence of Graphene Nanoplatelet Specific Surface Area on the Interlaminar Fracture Properties of Carbon Fiber/Epoxy Composites. Zafeiropoulou K; Kostagiannakopoulou C; Sotiriadis G; Kostopoulos V Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33371253 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves. Ning H; Li Y; Hu N; Cao Y; Yan C; Azuma T; Peng X; Wu L; Li J; Li L Sci Technol Adv Mater; 2014 Jun; 15(3):035004. PubMed ID: 27877680 [TBL] [Abstract][Full Text] [Related]
17. Effect of cellulose nanofibers on the fracture toughness mode II of glass fiber/epoxy composite laminates. Moustapha Sarr M; Kosaka T Heliyon; 2023 Feb; 9(2):e13203. PubMed ID: 36747534 [TBL] [Abstract][Full Text] [Related]
18. Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber. Santos JD; Guerrero JM; Blanco N; Fajardo JI; Paltán CA Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242978 [TBL] [Abstract][Full Text] [Related]
19. Fracture behavior of a commercial starch/polycaprolactone blend reinforced with different layered silicates. Pérez E; Pérez CJ; Alvarez VA; Bernal C Carbohydr Polym; 2013 Sep; 97(2):269-76. PubMed ID: 23911445 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and Thermo-Electro and Mechanical Properties Evaluation of Helical Multiwall Carbon Nanotube-Carbon Fiber/Epoxy Composite Laminates. Ali A; Andriyana A; Hassan SBA; Ang BC Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33947012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]