BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32456107)

  • 1. Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of
    Gajić G; Djurdjević L; Kostić O; Jarić S; Stevanović B; Mitrović M; Pavlović P
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32456107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Phytoremediation Potential and Physiological Adaptive Response of
    Kostić O; Jarić S; Gajić G; Pavlović D; Mataruga Z; Radulović N; Mitrović M; Pavlović P
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.
    Panda D; Panda D; Padhan B; Biswas M
    Int J Phytoremediation; 2018 May; 20(6):538-544. PubMed ID: 29688052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiological response of
    Kostić O; Jarić S; Pavlović D; Matić M; Radulović N; Mitrović M; Pavlović P
    Front Plant Sci; 2023; 14():1337700. PubMed ID: 38269133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit.
    Panda D; Mandal L; Barik J
    Int J Phytoremediation; 2020; 22(11):1195-1203. PubMed ID: 32356449
    [No Abstract]   [Full Text] [Related]  

  • 6. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Assessment of the Phytoremediation Potential of Planted and Spontaneously Colonized Woody Plant Species on Chronosequence Fly Ash Disposal Sites in Serbia-Case Study.
    Kostić O; Gajić G; Jarić S; Vukov T; Matić M; Mitrović M; Pavlović P
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.
    Pavlović P; Mitrović M; Djurdjević L
    Environ Manage; 2004 May; 33(5):654-63. PubMed ID: 15503386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.
    Qadir SU; Raja V; Siddiqui WA
    Ecotoxicol Environ Saf; 2016 Jul; 129():320-8. PubMed ID: 27077968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective.
    Yadav S; Pandey VC; Singh L
    Int J Phytoremediation; 2024; 26(9):1518-1525. PubMed ID: 38563239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolic acids as bioindicators of fly ash deposit revegetation.
    Djurdjević L; Mitrović M; Pavlović P; Gajić G; Kostić O
    Arch Environ Contam Toxicol; 2006 May; 50(4):488-95. PubMed ID: 16418890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land.
    Kisku GC; Kumar V; Sahu P; Kumar P; Kumar N
    Int J Phytoremediation; 2018 Mar; 20(4):330-337. PubMed ID: 29584466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological response of metal tolerance and detoxification in castor (
    Panda D; Mandal L; Barik J; Padhan B; Bisoi SS
    Heliyon; 2020 Aug; 6(8):e04567. PubMed ID: 32885064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Liu L; Yan D; He Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109973. PubMed ID: 31761549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: Vetiver can grow on coal fly ash without DNA damage.
    Chakraborty R; Mukherjee A
    Int J Phytoremediation; 2011 Feb; 13(2):206-14. PubMed ID: 21598787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.
    Bisoi SS; Mishra SS; Barik J; Panda D
    Int J Phytoremediation; 2017 May; 19(5):446-452. PubMed ID: 27739878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides.
    Jiménez MD; de Torre R; Mola I; Casado MA; Balaguer L
    J Environ Manage; 2018 Apr; 212():440-449. PubMed ID: 29455152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of Festuca rubra and Calamagrostis epigejos for the revegetation of fly ash deposits.
    Mitrović M; Pavlović P; Lakusić D; Djurdjević L; Stevanović B; Kostić O; Gajić G
    Sci Total Environ; 2008 Dec; 407(1):338-47. PubMed ID: 18945479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dactylis glomerata L. cultivation on mercury contaminated soil and its physiological response to granular sulphur aided phytostabilization.
    Pogrzeba M; Rusinowski S; Krzyżak J; Szada-Borzyszkowska A; McCalmont JP; Zieleźnik-Rusinowska P; Słaboń N; Sas-Nowosielska A
    Environ Pollut; 2019 Dec; 255(Pt 2):113271. PubMed ID: 31550655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.