BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32456131)

  • 1. Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs.
    Scherer A; Stephens VR; McGivney GR; Gutierrez WR; Laverty EA; Knepper-Adrian V; Dodd RD
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32456131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrepancies in indel software resolution with somatic CRISPR/Cas9 tumorigenesis models.
    Brockman QR; Scherer A; McGivney GR; Gutierrez WR; Rytlewski J; Sheehan A; Warrier A; Laverty EA; Roughton G; Carnevale NC; Knepper-Adrian V; Dodd RD
    Sci Rep; 2023 Sep; 13(1):14798. PubMed ID: 37684258
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Oppel F; Ki DH; Zimmerman MW; Ross KN; Tao T; Shi H; He S; Aster JC; Look AT
    Dis Model Mech; 2020 Aug; 13(8):. PubMed ID: 32651197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors.
    Kohlmeyer JL; Kaemmer CA; Pulliam C; Maharjan CK; Samayoa AM; Major HJ; Cornick KE; Knepper-Adrian V; Khanna R; Sieren JC; Leidinger MR; Meyerholz DK; Zamba KD; Weimer JM; Dodd RD; Darbro BW; Tanas MR; Quelle DE
    Clin Cancer Res; 2020 Jun; 26(12):2997-3011. PubMed ID: 32086342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of CRISPR/Cas9 Gene Editing to Confirm Congenic Contaminations in Host-Pathogen Interaction Studies.
    Ferrand J; Croft NP; Pépin G; Diener KR; Wu D; Mangan NE; Pedersen J; Behlke MA; Hayball JD; Purcell AW; Ferrero RL; Gantier MP
    Front Cell Infect Microbiol; 2018; 8():87. PubMed ID: 29616197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice.
    van der Weyden L; Jonkers J; Adams DJ
    Curr Opin Genet Dev; 2021 Feb; 66():57-62. PubMed ID: 33429291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal translocations inactivating CDKN2A support a single path for malignant peripheral nerve sheath tumor initiation.
    Magallón-Lorenz M; Fernández-Rodríguez J; Terribas E; Creus-Batchiller E; Romagosa C; Estival A; Perez Sidelnikova D; Salvador H; Villanueva A; Blanco I; Carrió M; Lázaro C; Serra E; Gel B
    Hum Genet; 2021 Aug; 140(8):1241-1252. PubMed ID: 34059954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.
    Engelholm LH; Riaz A; Serra D; Dagnæs-Hansen F; Johansen JV; Santoni-Rugiu E; Hansen SH; Niola F; Frödin M
    Gastroenterology; 2017 Dec; 153(6):1662-1673.e10. PubMed ID: 28923495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRC2 loss drives MPNST metastasis and matrix remodeling.
    Brockman QR; Scherer A; McGivney GR; Gutierrez WR; Voigt AP; Isaacson AL; Laverty EA; Roughton G; Knepper-Adrian V; Darbro B; Tanas MR; Stipp CS; Dodd RD
    JCI Insight; 2022 Oct; 7(20):. PubMed ID: 36066973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of smarcad1a accelerates tumorigenesis of malignant peripheral nerve sheath tumors in zebrafish.
    Han H; Jiang G; Kumari R; Silic MR; Owens JL; Hu CD; Mittal SK; Zhang G
    Genes Chromosomes Cancer; 2021 Nov; 60(11):743-761. PubMed ID: 34296799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribonucleoprotein Transfection for CRISPR/Cas9-Mediated Gene Knockout in Primary T Cells.
    Oh SA; Seki A; Rutz S
    Curr Protoc Immunol; 2019 Feb; 124(1):e69. PubMed ID: 30334617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR/Cas9 Gene Editing in Uncultured Naive Mouse T Cells for In Vivo Studies.
    Nüssing S; House IG; Kearney CJ; Chen AXY; Vervoort SJ; Beavis PA; Oliaro J; Johnstone RW; Trapani JA; Parish IA
    J Immunol; 2020 Apr; 204(8):2308-2315. PubMed ID: 32152070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma.
    Huang J; Chen M; Whitley MJ; Kuo HC; Xu ES; Walens A; Mowery YM; Van Mater D; Eward WC; Cardona DM; Luo L; Ma Y; Lopez OM; Nelson CE; Robinson-Hamm JN; Reddy A; Dave SS; Gersbach CA; Dodd RD; Kirsch DG
    Nat Commun; 2017 Jul; 8():15999. PubMed ID: 28691711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing.
    Iida M; Suzuki M; Sakane Y; Nishide H; Uchiyama I; Yamamoto T; Suzuki KT; Fujii S
    Genes Cells; 2020 Jul; 25(7):498-509. PubMed ID: 32323394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between immunodeficient mice generated by classical gene targeting and CRISPR/Cas9-mediated gene knockout.
    Lee JH; Park JH; Nam TW; Seo SM; Kim JY; Lee HK; Han JH; Park SY; Choi YK; Lee HW
    Transgenic Res; 2018 Jun; 27(3):241-251. PubMed ID: 29594927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Off-Target Analysis in CRISPR-Cas9 Modified Mice and Their Offspring.
    Dong Y; Li H; Zhao L; Koopman P; Zhang F; Huang JX
    G3 (Bethesda); 2019 Nov; 9(11):3645-3651. PubMed ID: 31492696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.
    Chu VT; Weber T; Graf R; Sommermann T; Petsch K; Sack U; Volchkov P; Rajewsky K; Kühn R
    BMC Biotechnol; 2016 Jan; 16():4. PubMed ID: 26772810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.