These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 32456194)
1. Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality. González Izard S; Sánchez Torres R; Alonso Plaza Ó; Juanes Méndez JA; García-Peñalvo FJ Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456194 [TBL] [Abstract][Full Text] [Related]
2. Applications of Virtual and Augmented Reality in Biomedical Imaging. González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965 [TBL] [Abstract][Full Text] [Related]
3. Fully automatic brain tumor segmentation for 3D evaluation in augmented reality. Fick T; van Doormaal JAM; Tosic L; van Zoest RJ; Meulstee JW; Hoving EW; van Doormaal TPC Neurosurg Focus; 2021 Aug; 51(2):E14. PubMed ID: 34333477 [TBL] [Abstract][Full Text] [Related]
4. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Goo HW; Park SJ; Yoo SJ Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589 [TBL] [Abstract][Full Text] [Related]
5. Studierfenster: an Open Science Cloud-Based Medical Imaging Analysis Platform. Egger J; Wild D; Weber M; Bedoya CAR; Karner F; Prutsch A; Schmied M; Dionysio C; Krobath D; Jin Y; Gsaxner C; Li J; Pepe A J Digit Imaging; 2022 Apr; 35(2):340-355. PubMed ID: 35064372 [TBL] [Abstract][Full Text] [Related]
6. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials. Kong SH; Haouchine N; Soares R; Klymchenko A; Andreiuk B; Marques B; Shabat G; Piechaud T; Diana M; Cotin S; Marescaux J Surg Endosc; 2017 Jul; 31(7):2863-2871. PubMed ID: 27796600 [TBL] [Abstract][Full Text] [Related]
7. Fully Automatic Adaptive Meshing Based Segmentation of the Ventricular System for Augmented Reality Visualization and Navigation. van Doormaal JAM; Fick T; Ali M; Köllen M; van der Kuijp V; van Doormaal TPC World Neurosurg; 2021 Dec; 156():e9-e24. PubMed ID: 34333157 [TBL] [Abstract][Full Text] [Related]
8. Polymorph segmentation representation for medical image computing. Pinter C; Lasso A; Fichtinger G Comput Methods Programs Biomed; 2019 Apr; 171():19-26. PubMed ID: 30902247 [TBL] [Abstract][Full Text] [Related]
9. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. Sutherland J; Belec J; Sheikh A; Chepelev L; Althobaity W; Chow BJW; Mitsouras D; Christensen A; Rybicki FJ; La Russa DJ J Digit Imaging; 2019 Feb; 32(1):38-53. PubMed ID: 30215180 [TBL] [Abstract][Full Text] [Related]
10. HEARTBEAT4D: An Open-source Toolbox for Turning 4D Cardiac CT into VR/AR. Bindschadler M; Buddhe S; Ferguson MR; Jones T; Friedman SD; Otto RK J Digit Imaging; 2022 Dec; 35(6):1759-1767. PubMed ID: 35614275 [TBL] [Abstract][Full Text] [Related]
11. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules. Ammanuel S; Brown I; Uribe J; Rehani B J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902 [TBL] [Abstract][Full Text] [Related]
12. Indocyanine Green Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy: The Beginning of "Automatic" Overlapping Era. Amparore D; Checcucci E; Piazzolla P; Piramide F; De Cillis S; Piana A; Verri P; Manfredi M; Fiori C; Vezzetti E; Porpiglia F Urology; 2022 Jun; 164():e312-e316. PubMed ID: 35063460 [TBL] [Abstract][Full Text] [Related]
13. Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality. Li R; Tong Y; Yang T; Guo J; Si W; Zhang Y; Klein R; Heng PA Comput Med Imaging Graph; 2021 Jun; 90():101905. PubMed ID: 33848757 [TBL] [Abstract][Full Text] [Related]
14. On the Use of Virtual Reality for Medical Imaging Visualization. Pires F; Costa C; Dias P J Digit Imaging; 2021 Aug; 34(4):1034-1048. PubMed ID: 34327628 [TBL] [Abstract][Full Text] [Related]
15. Combining Augmented Reality and 3D Printing to Display Patient Models on a Smartphone. Moreta-Martinez R; García-Mato D; García-Sevilla M; Pérez-Mañanes R; Calvo-Haro JA; Pascau J J Vis Exp; 2020 Jan; (155):. PubMed ID: 31957749 [TBL] [Abstract][Full Text] [Related]
16. Advanced 3D Visualization and 3D Printing in Radiology. Fidvi S; Holder J; Li H; Parnes GJ; Shamir SB; Wake N Adv Exp Med Biol; 2023; 1406():103-138. PubMed ID: 37016113 [TBL] [Abstract][Full Text] [Related]
17. Computer Vision and Machine-Learning Techniques for Automatic 3D Virtual Images Overlapping During Augmented Reality Guided Robotic Partial Nephrectomy. Amparore D; Sica M; Verri P; Piramide F; Checcucci E; De Cillis S; Piana A; Campobasso D; Burgio M; Cisero E; Busacca G; Di Dio M; Piazzolla P; Fiori C; Porpiglia F Technol Cancer Res Treat; 2024; 23():15330338241229368. PubMed ID: 38374643 [TBL] [Abstract][Full Text] [Related]
19. Digital three-dimensional visualization of intrabony periodontal defects for regenerative surgical treatment planning. Palkovics D; Mangano FG; Nagy K; Windisch P BMC Oral Health; 2020 Dec; 20(1):351. PubMed ID: 33261592 [TBL] [Abstract][Full Text] [Related]
20. The potential of 3D models and augmented reality in teaching cross-sectional radiology. Pinsky BM; Panicker S; Chaudhary N; Gemmete JJ; Wilseck ZM; Lin L Med Teach; 2023 Oct; 45(10):1108-1111. PubMed ID: 37542360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]