These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32456238)

  • 1. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials.
    Tobajas R; Elduque D; Ibarz E; Javierre C; Gracia L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32456238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain energy-based rubber fatigue life prediction under the influence of temperature.
    Zhang J; Xue F; Wang Y; Zhang X; Han S
    R Soc Open Sci; 2018 Oct; 5(10):180951. PubMed ID: 30473840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter.
    Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y
    Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
    Mahtabi MJ; Shamsaei N
    J Mech Behav Biomed Mater; 2015 Mar; 55():236-249. PubMed ID: 26594783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting fatigue life of a PMMA based knee spacer using a multiaxial fatigue criterion.
    Carnelli D; Villa T; Gastaldi D; Pennati G
    J Appl Biomater Biomech; 2011; 9(3):185-92. PubMed ID: 22190265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Interval Prediction of Chloroprene Rubber Crack Propagation Characteristics Based on Thermal Accelerated Aging.
    Yin S; Bai Y; Kong F; Wang Z; Fang C
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress-Strain Conditions.
    Karolczuk A; Skibicki D; Pejkowski Ł
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Fatigue Life Model for Rubber Materials Based on Fracture Mechanics.
    Qiu X; Yin H; Xing Q; Jin Q
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model.
    Song D; Kang G; Yu C; Kan Q; Zhang C
    J Mech Behav Biomed Mater; 2019 Jun; 94():267-278. PubMed ID: 30933835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer.
    Hopf R; Bernardi L; Menze J; Zündel M; Mazza E; Ehret AE
    J Mech Behav Biomed Mater; 2016 Jul; 60():425-437. PubMed ID: 26990071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Life Assessment of Filled Rubber by Hysteresis Induced Self-Heating Temperature.
    Luo W; Huang Y; Yin B; Jiang X; Hu X
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Behavior of Cord-Rubber Composite Materials under Different Loading Conditions.
    Torggler J; Leitner M; Buzzi C; Faethe T; Müller H; Machado Charry E
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model.
    Bergström JS; Rimnac CM; Kurtz SM
    Biomaterials; 2003 Apr; 24(8):1365-80. PubMed ID: 12527278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification.
    Wang W; Liu Y; Xie Z
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.