BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32456320)

  • 1. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of Biped Walking.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment.
    Hong YD
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot placement modification for a biped humanoid robot with narrow feet.
    Hashimoto K; Hattori K; Otani T; Lim HO; Takanishi A
    ScientificWorldJournal; 2014; 2014():259570. PubMed ID: 24592154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foot and body control of biped robots to walk on irregularly protruded uneven surfaces.
    Park JH; Kim ES
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):289-97. PubMed ID: 19068443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion synthesis and force distribution analysis for a biped robot.
    Trojnacki MT; Zielińska T
    Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm.
    Yang L; Liu Z; Chen Y
    ISA Trans; 2019 Apr; 87():143-153. PubMed ID: 30503270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic walking trajectory generation of humanoid robot on an inclined surface using Fourier series.
    Park IW; Kim JY
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7533-9. PubMed ID: 25942821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory Planning of Flexible Walking for Biped Robots Using Linear Inverted Pendulum Model and Linear Pendulum Model.
    Li L; Xie Z; Luo X; Li J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A controller for walking derived from how humans recover from perturbations.
    Joshi V; Srinivasan M
    J R Soc Interface; 2019 Aug; 16(157):20190027. PubMed ID: 31409232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment.
    Raković M; Savić S; Santos-Victor J; Nikolić M; Borovac B
    Front Neurorobot; 2019; 13():36. PubMed ID: 31214011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-efficient SVM learning control system for biped walking robots.
    Wang L; Liu Z; Chen CL; Zhang Y; Lee S; Chen X
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):831-7. PubMed ID: 24808432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.