These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32456429)

  • 1. XO-PBC: An Accurate and Efficient Method for Molecular Crystals.
    Chen B; Xu X
    J Chem Theory Comput; 2020 Jul; 16(7):4271-4285. PubMed ID: 32456429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminating and understanding molecular crystal polymorphism.
    Chen B; Xu X
    J Comput Chem; 2023 Apr; 44(9):969-979. PubMed ID: 36585855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.
    Fang T; Jia J; Li S
    J Phys Chem A; 2016 May; 120(17):2700-11. PubMed ID: 27076120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties.
    Hoja J; List A; Boese AD
    J Chem Theory Comput; 2024 Jan; 20(1):357-367. PubMed ID: 38109226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory.
    Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM
    J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method.
    Li Y; Wang D; Fu F; Xia Q; Li W; Li S
    J Comput Chem; 2022 Apr; 43(10):704-716. PubMed ID: 35213748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XO: an extended ONIOM method for accurate and efficient modeling of large systems.
    Guo W; Wu A; Zhang IY; Xu X
    J Comput Chem; 2012 Oct; 33(27):2142-60. PubMed ID: 22764057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach.
    Hong B; Fang T; Li W; Li S
    J Chem Phys; 2023 Jan; 158(4):044117. PubMed ID: 36725497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.
    Fang T; Li W; Gu F; Li S
    J Chem Theory Comput; 2015 Jan; 11(1):91-8. PubMed ID: 26574207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and Efficient Prediction of NMR Parameters of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method.
    Zhao D; Shen X; Cheng Z; Li W; Dong H; Li S
    J Chem Theory Comput; 2020 May; 16(5):2995-3005. PubMed ID: 32302485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach.
    Li W; Dong H; Ma J; Li S
    Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Linear-Scaling Electrostatic Coupling for Treating Periodic Boundary Conditions in QM/MM Simulations.
    Laino T; Mohamed F; Laio A; Parrinello M
    J Chem Theory Comput; 2006 Sep; 2(5):1370-8. PubMed ID: 26626844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.
    Huang C; Muñoz-García AB; Pavone M
    J Chem Phys; 2016 Dec; 145(24):244103. PubMed ID: 28010066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Accurate Electric Field Gradient Calculations in Molecular Solids With Density Functional Theory.
    Hartman JD; Mathews A; Harper JK
    Front Chem; 2021; 9():751711. PubMed ID: 34692646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating
    Ke Z; Weng J; Xu X
    J Comput Chem; 2023 Nov; 44(30):2347-2357. PubMed ID: 37572044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treating dispersion effects in extended systems by hybrid MP2:DFT calculations--protonation of isobutene in zeolite ferrierite.
    Tuma C; Sauer J
    Phys Chem Chem Phys; 2006 Sep; 8(34):3955-65. PubMed ID: 17028686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.