These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 32456440)
1. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440 [TBL] [Abstract][Full Text] [Related]
2. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related]
3. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D. Wang KF; Nagarajan R; Mello CM; Camesano TA J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290 [TBL] [Abstract][Full Text] [Related]
4. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
5. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
6. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
7. Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Scott MG; Gold MR; Hancock RE Infect Immun; 1999 Dec; 67(12):6445-53. PubMed ID: 10569762 [TBL] [Abstract][Full Text] [Related]
8. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies. Swana KW; Camesano TA; Nagarajan R Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265 [TBL] [Abstract][Full Text] [Related]
9. Quantifying Lipid Mobility and Peptide Binding for Gram-Negative and Gram-Positive Model Supported Lipid Bilayers. Li X; Smith AW J Phys Chem B; 2019 Dec; 123(49):10433-10440. PubMed ID: 31729230 [TBL] [Abstract][Full Text] [Related]
10. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Malanovic N; Lohner K Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273 [TBL] [Abstract][Full Text] [Related]
11. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Swana KW; Nagarajan R; Camesano TA Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Lozeau LD; Rolle MW; Camesano TA Biointerphases; 2019 Apr; 14(2):021006. PubMed ID: 31039613 [TBL] [Abstract][Full Text] [Related]
13. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394 [TBL] [Abstract][Full Text] [Related]
14. Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Bucki R; Janmey PA Antimicrob Agents Chemother; 2006 Sep; 50(9):2932-40. PubMed ID: 16940084 [TBL] [Abstract][Full Text] [Related]
15. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Torcato IM; Huang YH; Franquelim HG; Gaspar D; Craik DJ; Castanho MA; Troeira Henriques S Biochim Biophys Acta; 2013 Mar; 1828(3):944-55. PubMed ID: 23246973 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. Krusong K; Poolpipat P; Supungul P; Tassanakajon A Dev Comp Immunol; 2012 Jan; 36(1):208-15. PubMed ID: 21855569 [TBL] [Abstract][Full Text] [Related]
17. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Szentirmai É; Massie AR; Kapás L Brain Behav Immun; 2021 Feb; 92():184-192. PubMed ID: 33307170 [TBL] [Abstract][Full Text] [Related]
18. Molecular insights into the interactions of GF-17 with the gram-negative and gram-positive bacterial lipid bilayers. Jahangiri S; Jafari M; Arjomand M; Mehrnejad F J Cell Biochem; 2018 Nov; 119(11):9205-9216. PubMed ID: 30076752 [TBL] [Abstract][Full Text] [Related]
19. Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Lee KJ; Lee MA; Hwang W; Park H; Lee KH Biofouling; 2016 Aug; 32(7):711-23. PubMed ID: 27294580 [TBL] [Abstract][Full Text] [Related]