BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32456535)

  • 1. Alternate Electrode Positions for the Measurement of Hand Volumes Using Bioimpedance Spectroscopy.
    Edwick DO; Hince DA; Rawlins JM; Wood FM; Edgar DW
    Lymphat Res Biol; 2020 Dec; 18(6):560-571. PubMed ID: 32456535
    [No Abstract]   [Full Text] [Related]  

  • 2. Alternate electrode placement for whole body and segmental bioimpedance spectroscopy.
    Grisbrook TL; Kenworthy P; Phillips M; Gittings PM; Wood FM; Edgar DW
    Physiol Meas; 2015 Oct; 36(10):2189-201. PubMed ID: 26365564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of hand volume by bioelectrical impedance spectroscopy.
    Ward LC; Dylke ES; Kilbreath SL
    Lymphat Res Biol; 2012 Jun; 10(2):81-6. PubMed ID: 22720663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing the Barriers to Bioimpedance Spectroscopy Use in Major Burns: Alternate Electrode Placement.
    Kenworthy P; Grisbrook TL; Phillips M; Gibson W; Wood FM; Edgar DW
    J Burn Care Res; 2017; 38(6):e952-e959. PubMed ID: 28328660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode Equivalence for Use in Bioimpedance Spectroscopy Assessment of Lymphedema.
    Svensson BJ; Dylke ES; Ward LC; Kilbreath SL
    Lymphat Res Biol; 2019 Feb; 17(1):51-59. PubMed ID: 30300090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body Positional Effects on Bioimpedance Spectroscopy Measurements for Lymphedema Assessment of the Arm.
    Koelmeyer LA; Ward LC; Dean C; Boyages J
    Lymphat Res Biol; 2020 Oct; 18(5):464-473. PubMed ID: 32027213
    [No Abstract]   [Full Text] [Related]  

  • 7. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect.
    Nescolarde L; Lukaski H; De Lorenzo A; de-Mateo-Silleras B; Redondo-Del-Río MP; Camina-Martín MA
    Eur J Clin Nutr; 2016 Dec; 70(12):1401-1407. PubMed ID: 27380885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Segmental Bioelectrical Impedance Spectroscopy Device for Body Composition Measurement.
    Cannon T; Choi J
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31698709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of bioimpedance spectroscopy devices: a comparative study and error analysis of gold-plated copper electrodes.
    Mussnig S; Krenn S; Hecking M; Wabel P
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38237199
    [No Abstract]   [Full Text] [Related]  

  • 10. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.
    Jaffrin MY; Morel H
    Med Eng Phys; 2008 Dec; 30(10):1257-69. PubMed ID: 18676172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Practical Method to Reduce Electrode Mismatch Artefacts during 4-electrode BioImpedance Spectroscopy Measurements.
    Montalibet A; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5775-5779. PubMed ID: 30441648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of internal electrodes is beneficial for focused bioimpedance measurements in the lung.
    Orschulik J; Hochhausen N; Czaplik M; Teichmann D; Leonhardt S; Walter M
    Physiol Meas; 2018 Mar; 39(3):035009. PubMed ID: 29406309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of Single-Tab Electrodes for Bioimpedance Spectroscopy Measures.
    Donahue PMC; Crescenzi R; Du L; Donahue MJ
    Lymphat Res Biol; 2020 Jun; 18(3):277-283. PubMed ID: 31536441
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioimpedance Spectroscopy Is a Valid and Reliable Measure of Edema Following Hand Burn Injury (Part 1-Method Validation).
    Edwick DO; Hince DA; Rawlins JM; Wood FM; Edgar DW
    J Burn Care Res; 2020 Jul; 41(4):780-787. PubMed ID: 32386214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode placement in bioimpedance spectroscopy: evaluation of alternative positioning of electrodes when measuring relative dehydration in athletes.
    Birkemose M; Møller AJ; Madsen ML; Brantlov S; Sørensen H; Overgaard K; Johansen P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3028-31. PubMed ID: 24110365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved electrode positions for local impedance measurements in the lung-a simulation study.
    Orschulik J; Petkau R; Wartzek T; Hochhausen N; Czaplik M; Leonhardt S; Teichmann D
    Physiol Meas; 2016 Dec; 37(12):2111-2129. PubMed ID: 27811407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.
    Smith DC
    J Med Eng Technol; 1992; 16(3):112-6. PubMed ID: 1404312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal electrode placement and frequency range selection for the detection of lung water using bioimpedance spectroscopy.
    Beckmann L; van Riesen D; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2685-8. PubMed ID: 18002548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Body Positioning When Assessing Lymphedema of the Lower Limb Using Bioimpedance Spectroscopy.
    Koelmeyer LA; Gaitatzis K; Thompson B; Ward LC
    Lymphat Res Biol; 2024 Feb; 22(1):43-54. PubMed ID: 37851985
    [No Abstract]   [Full Text] [Related]  

  • 20. Bioimpedance spectroscopy: A technique to monitor interventions for swelling in minor burns.
    Kenworthy P; Grisbrook TL; Phillips M; Gittings P; Wood FM; Gibson W; Edgar DW
    Burns; 2017 Dec; 43(8):1725-1735. PubMed ID: 28781137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.