These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 32457038)
21. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. Asrani P; Hasan GM; Sohal SS; Hassan MI OMICS; 2020 Nov; 24(11):634-644. PubMed ID: 32940573 [TBL] [Abstract][Full Text] [Related]
22. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Samrat SK; Tharappel AM; Li Z; Li H Virus Res; 2020 Oct; 288():198141. PubMed ID: 32846196 [TBL] [Abstract][Full Text] [Related]
23. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. Tripathy S; Dassarma B; Roy S; Chabalala H; Matsabisa MG Int J Antimicrob Agents; 2020 Aug; 56(2):106028. PubMed ID: 32450198 [TBL] [Abstract][Full Text] [Related]
24. Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Ekins S; Mottin M; Ramos PRPS; Sousa BKP; Neves BJ; Foil DH; Zorn KM; Braga RC; Coffee M; Southan C; Puhl AC; Andrade CH Drug Discov Today; 2020 May; 25(5):928-941. PubMed ID: 32320852 [TBL] [Abstract][Full Text] [Related]
25. Overview of lethal human coronaviruses. Chen B; Tian EK; He B; Tian L; Han R; Wang S; Xiang Q; Zhang S; El Arnaout T; Cheng W Signal Transduct Target Ther; 2020 Jun; 5(1):89. PubMed ID: 32533062 [TBL] [Abstract][Full Text] [Related]
26. COVID-19 and the nervous system. Berger JR J Neurovirol; 2020 Apr; 26(2):143-148. PubMed ID: 32447630 [TBL] [Abstract][Full Text] [Related]
27. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Trezza A; Iovinelli D; Santucci A; Prischi F; Spiga O Sci Rep; 2020 Aug; 10(1):13866. PubMed ID: 32807895 [TBL] [Abstract][Full Text] [Related]
28. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. Liu Z; Xiao X; Wei X; Li J; Yang J; Tan H; Zhu J; Zhang Q; Wu J; Liu L J Med Virol; 2020 Jun; 92(6):595-601. PubMed ID: 32100877 [TBL] [Abstract][Full Text] [Related]
29. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Zhu Y; Yu D; Yan H; Chong H; He Y J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627 [TBL] [Abstract][Full Text] [Related]
30. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651 [TBL] [Abstract][Full Text] [Related]
31. COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer. Mihalopoulos M; Dogra N; Mohamed N; Badani K; Kyprianou N Eur Urol Focus; 2020 Sep; 6(5):1086-1096. PubMed ID: 32540268 [TBL] [Abstract][Full Text] [Related]
32. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Datta PK; Liu F; Fischer T; Rappaport J; Qin X Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005 [TBL] [Abstract][Full Text] [Related]
33. Cancer therapy and treatments during COVID-19 era. Akula SM; Abrams SL; Steelman LS; Candido S; Libra M; Lerpiriyapong K; Cocco L; Ramazzotti G; Ratti S; Follo MY; Martelli AM; Blalock WL; Piazzi M; Montalto G; Cervello M; Notarbartolo M; Basecke J; McCubrey JA Adv Biol Regul; 2020 Aug; 77():100739. PubMed ID: 32773105 [TBL] [Abstract][Full Text] [Related]
34. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
35. Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19. Sun J; Chen Y; Fan X; Wang X; Han Q; Liu Z Postgrad Med; 2020 Sep; 132(7):604-613. PubMed ID: 32496926 [TBL] [Abstract][Full Text] [Related]
36. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW; Xu YM; Lau ATY Rev Med Virol; 2020 Sep; 30(5):e2122. PubMed ID: 32602627 [TBL] [Abstract][Full Text] [Related]
37. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Catanzaro M; Fagiani F; Racchi M; Corsini E; Govoni S; Lanni C Signal Transduct Target Ther; 2020 May; 5(1):84. PubMed ID: 32467561 [TBL] [Abstract][Full Text] [Related]
38. Facing the COVID-19 outbreak: What should we know and what could we do? Yang Y; Shang W; Rao X J Med Virol; 2020 Jun; 92(6):536-537. PubMed ID: 32091134 [No Abstract] [Full Text] [Related]
39. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a newly emerged pathogen: an overview. Rathore JS; Ghosh C Pathog Dis; 2020 Aug; 78(6):. PubMed ID: 32840560 [TBL] [Abstract][Full Text] [Related]
40. Identification of a druggable binding pocket in the spike protein reveals a key site for existing drugs potentially capable of combating Covid-19 infectivity. Drew ED; Janes RW BMC Mol Cell Biol; 2020 Jul; 21(1):49. PubMed ID: 32611313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]