These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32457158)
1. Spatial frequency tuning of motor responses reveals differential contribution of dorsal and ventral systems to action comprehension. Amoruso L; Finisguerra A; Urgesi C Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13151-13161. PubMed ID: 32457158 [TBL] [Abstract][Full Text] [Related]
2. "Left and right prefrontal routes to action comprehension". Amoruso L; Finisguerra A; Urgesi C Cortex; 2023 Jun; 163():1-13. PubMed ID: 37030047 [TBL] [Abstract][Full Text] [Related]
3. Contextualizing action observation in the predictive brain: Causal contributions of prefrontal and middle temporal areas. Amoruso L; Finisguerra A; Urgesi C Neuroimage; 2018 Aug; 177():68-78. PubMed ID: 29753844 [TBL] [Abstract][Full Text] [Related]
4. Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study. Bianco V; Finisguerra A; D'Argenio G; Boscarol S; Urgesi C Neuroimage; 2024 Aug; 297():120702. PubMed ID: 38909762 [TBL] [Abstract][Full Text] [Related]
5. Tracking the Time Course of Top-Down Contextual Effects on Motor Responses during Action Comprehension. Amoruso L; Finisguerra A; Urgesi C J Neurosci; 2016 Nov; 36(46):11590-11600. PubMed ID: 27852769 [TBL] [Abstract][Full Text] [Related]
6. Observation of an action with a congruent contextual background facilitates corticospinal excitability: A combined TMS and eye-tracking experiment. Riach M; Holmes PS; Franklin ZC; Wright DJ Neuropsychologia; 2018 Oct; 119():157-164. PubMed ID: 30098329 [TBL] [Abstract][Full Text] [Related]
7. Generalization of motor resonance during the observation of hand, mouth, and eye movements. Finisguerra A; Maffongelli L; Bassolino M; Jacono M; Pozzo T; D'Ausilio A J Neurophysiol; 2015 Oct; 114(4):2295-304. PubMed ID: 26289463 [TBL] [Abstract][Full Text] [Related]
8. Age-Related Differences in Spatial Frequency Processing during Scene Categorization. Ramanoël S; Kauffmann L; Cousin E; Dojat M; Peyrin C PLoS One; 2015; 10(8):e0134554. PubMed ID: 26288146 [TBL] [Abstract][Full Text] [Related]
9. Contextual modulation of motor resonance during the observation of everyday actions. Amoruso L; Urgesi C Neuroimage; 2016 Jul; 134():74-84. PubMed ID: 27039139 [TBL] [Abstract][Full Text] [Related]
10. Early and late effects of objecthood and spatial frequency on event-related potentials and gamma band activity. Craddock M; Martinovic J; Müller MM BMC Neurosci; 2015 Feb; 16():6. PubMed ID: 25886858 [TBL] [Abstract][Full Text] [Related]
11. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study. Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609 [TBL] [Abstract][Full Text] [Related]
12. The Relative Influence of Goal and Kinematics on Corticospinal Excitability Depends on the Information Provided to the Observer. Mc Cabe SI; Villalta JI; Saunier G; Grafton ST; Della-Maggiore V Cereb Cortex; 2015 Aug; 25(8):2229-37. PubMed ID: 24591524 [TBL] [Abstract][Full Text] [Related]
13. Task and spatial frequency modulations of object processing: an EEG study. Craddock M; Martinovic J; Müller MM PLoS One; 2013; 8(7):e70293. PubMed ID: 23936181 [TBL] [Abstract][Full Text] [Related]
14. Reading about the actions of others: biological motion imagery and action congruency influence brain activity. Deen B; McCarthy G Neuropsychologia; 2010 May; 48(6):1607-15. PubMed ID: 20138900 [TBL] [Abstract][Full Text] [Related]
15. Understanding actors and object-goals in the human brain. Ramsey R; Hamilton AF Neuroimage; 2010 Apr; 50(3):1142-7. PubMed ID: 20060912 [TBL] [Abstract][Full Text] [Related]
16. Dissociated Representations of Deceptive Intentions and Kinematic Adaptations in the Observer's Motor System. Finisguerra A; Amoruso L; Makris S; Urgesi C Cereb Cortex; 2018 Jan; 28(1):33-47. PubMed ID: 29253254 [TBL] [Abstract][Full Text] [Related]
17. Distinct preference for spatial frequency content in ventral stream regions underlying the recognition of scenes, faces, bodies and other objects. Canário N; Jorge L; Loureiro Silva MF; Alberto Soares M; Castelo-Branco M Neuropsychologia; 2016 Jul; 87():110-119. PubMed ID: 27180002 [TBL] [Abstract][Full Text] [Related]
18. Spatial Frequency Tuning of Body Inversion Effects. D'Argenio G; Finisguerra A; Urgesi C Brain Sci; 2023 Jan; 13(2):. PubMed ID: 36831733 [TBL] [Abstract][Full Text] [Related]
19. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects. Freud E; Avidan G; Ganel T Psychon Bull Rev; 2015 Feb; 22(1):297-306. PubMed ID: 24957536 [TBL] [Abstract][Full Text] [Related]
20. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization. Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]