These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32457159)

  • 21. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wettability and surface free energy of graphene films.
    Wang S; Zhang Y; Abidi N; Cabrales L
    Langmuir; 2009 Sep; 25(18):11078-81. PubMed ID: 19735153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment.
    Gnecco E; Socoliuc A; Maier S; Gessler J; Glatzel T; Baratoff A; Meyer E
    Nanotechnology; 2009 Jan; 20(2):025501. PubMed ID: 19417269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffusion and drift of graphene flake on graphite surface.
    Lebedeva IV; Knizhnik AA; Popov AM; Ershova OV; Lozovik YE; Potapkin BV
    J Chem Phys; 2011 Mar; 134(10):104505. PubMed ID: 21405173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomistic simulations of the load dependant friction force between silicon tip and diamond substrate.
    Bu H; Chen Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7501-5. PubMed ID: 21137969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative friction coefficient in microscale graphite/mica layered heterojunctions.
    Liu B; Wang J; Zhao S; Qu C; Liu Y; Ma L; Zhang Z; Liu K; Zheng Q; Ma M
    Sci Adv; 2020 Apr; 6(16):eaaz6787. PubMed ID: 32494618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness.
    Wang Z; Mao B; Wang Q; Yu J; Dai J; Song R; Pu Z; He D; Wu Z; Mu S
    Small; 2018 May; 14(20):e1704332. PubMed ID: 29665217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution.
    Wang K; Qu C; Wang J; Ouyang W; Ma M; Zheng Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36169-36176. PubMed ID: 31486630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability.
    Lu W; Qin F; Wang Y; Luo Y; Wang H; Scarpa F; Li J; Sesana R; Cura F; Peng HX
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30278-30289. PubMed ID: 31347353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wear Resistance Limited by Step Edge Failure: The Rise and Fall of Graphene as an Atomically Thin Lubricating Material.
    Qi Y; Liu J; Zhang J; Dong Y; Li Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1099-1106. PubMed ID: 28073278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The registry index: a quantitative measure of materials' interfacial commensurability.
    Hod O
    Chemphyschem; 2013 Aug; 14(11):2376-91. PubMed ID: 23780640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Superlubricity in Graphene/h-BN Heterojunctions.
    Leven I; Krepel D; Shemesh O; Hod O
    J Phys Chem Lett; 2013 Jan; 4(1):115-20. PubMed ID: 26291222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments.
    Saravanan P; Selyanchyn R; Tanaka H; Darekar D; Staykov A; Fujikawa S; Lyth SM; Sugimura J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27179-27187. PubMed ID: 27636510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Studies of Hydrographenes.
    Vishnyakova E; Chen G; Brinson BE; Alemany LB; Billups WE
    Acc Chem Res; 2017 Jun; 50(6):1351-1358. PubMed ID: 28485593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.
    Sun J; Zhang Y; Lu Z; Xue Q; Wang L
    Phys Chem Chem Phys; 2017 May; 19(18):11026-11031. PubMed ID: 28397884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.