BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32457330)

  • 1. Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling.
    García-Romero I; Nogales J; Díaz E; Santero E; Floriano B
    Sci Rep; 2020 May; 10(1):8651. PubMed ID: 32457330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of Sphingopyxis granuli strain TFA to the hostile anoxic condition.
    González-Flores YE; de Dios R; Reyes-Ramírez F; Santero E
    Sci Rep; 2019 Apr; 9(1):6297. PubMed ID: 31000749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas macrogoltabida) strain TFA.
    García-Romero I; Pérez-Pulido AJ; González-Flores YE; Reyes-Ramírez F; Santero E; Floriano B
    BMC Genomics; 2016 Feb; 17():93. PubMed ID: 26847793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of Tetralin: Genomics, Gene Function and Regulation.
    Floriano B; Santero E; Reyes-Ramírez F
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31064110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SuhB, a small non-coding RNA involved in catabolite repression of tetralin degradation genes in Sphingopyxis granuli strain TFA.
    García-Romero I; Förstner KU; Santero E; Floriano B
    Environ Microbiol; 2018 Oct; 20(10):3671-3683. PubMed ID: 30033661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of two fnr genes and characterisation of their role in the anaerobic switch in Sphingopyxis granuli strain TFA.
    González-Flores YE; de Dios R; Reyes-Ramírez F; Santero E
    Sci Rep; 2020 Dec; 10(1):21019. PubMed ID: 33273546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
    Nogales J; Palsson BØ; Thiele I
    BMC Syst Biol; 2008 Sep; 2():79. PubMed ID: 18793442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA.
    de Dios R; Rivas-Marin E; Santero E; Reyes-Ramírez F
    Sci Rep; 2020 Mar; 10(1):5177. PubMed ID: 32198475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256.
    Williams TJ; Ertan H; Ting L; Cavicchioli R
    ISME J; 2009 Sep; 3(9):1036-52. PubMed ID: 19458655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.
    Aylward FO; McDonald BR; Adams SM; Valenzuela A; Schmidt RA; Goodwin LA; Woyke T; Currie CR; Suen G; Poulsen M
    Appl Environ Microbiol; 2013 Jun; 79(12):3724-33. PubMed ID: 23563954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.
    Ledesma-García L; Sánchez-Azqueta A; Medina M; Reyes-Ramírez F; Santero E
    Sci Rep; 2016 Mar; 6():23848. PubMed ID: 27030382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of Sphingopyxis spp. unravelled functional attributes.
    Verma H; Dhingra GG; Sharma M; Gupta V; Negi RK; Singh Y; Lal R
    Genomics; 2020 Mar; 112(2):1956-1969. PubMed ID: 31740292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingopyxis granuli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in alpha-4 subclass of the Proteobacteria.
    Kim MK; Im WT; Ohta H; Lee M; Lee ST
    J Microbiol; 2005 Apr; 43(2):152-7. PubMed ID: 15880090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.
    Contador CA; Rodríguez V; Andrews BA; Asenjo JA
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1075-90. PubMed ID: 26459337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319.
    Aminian-Dehkordi J; Mousavi SM; Jafari A; Mijakovic I; Marashi SA
    Sci Rep; 2019 Dec; 9(1):18762. PubMed ID: 31822710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Analysis of γ-Hexachlorocyclohexane-Degrading
    Kaminski MA; Sobczak A; Dziembowski A; Lipinski L
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500174
    [No Abstract]   [Full Text] [Related]  

  • 17. Genome sequence of Sphingobium indicum B90A, a hexachlorocyclohexane-degrading bacterium.
    Anand S; Sangwan N; Lata P; Kaur J; Dua A; Singh AK; Verma M; Kaur J; Khurana JP; Khurana P; Mathur S; Lal R
    J Bacteriol; 2012 Aug; 194(16):4471-2. PubMed ID: 22843598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features.
    Martín-Moldes Z; Zamarro MT; Del Cerro C; Valencia A; Gómez MJ; Arcas A; Udaondo Z; García JL; Nogales J; Carmona M; Díaz E
    Syst Appl Microbiol; 2015 Oct; 38(7):462-71. PubMed ID: 26259823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetralin-induced and ThnR-regulated aldehyde dehydrogenase and beta-oxidation genes in Sphingomonas macrogolitabida strain TFA.
    López-Sánchez A; Floriano B; Andújar E; Hernáez MJ; Santero E
    Appl Environ Microbiol; 2010 Jan; 76(1):110-8. PubMed ID: 19897762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway.
    Ledesma-García L; Reyes-Ramírez F; Santero E
    PLoS One; 2013; 8(9):e73910. PubMed ID: 24069247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.