These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32457729)

  • 1. Insights Into the Role of Exposed Surface Charged Residues in the Alkali-Tolerance of GH11 Xylanase.
    Wu X; Zhang Q; Zhang L; Liu S; Chen G; Zhang H; Wang L
    Front Microbiol; 2020; 11():872. PubMed ID: 32457729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment.
    Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z
    Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosyl hydrolase 11 (xynA) gene with xylanase activity from thermophilic bacteria isolated from thermal springs.
    Joshi JB; Priyadharshini R; Uthandi S
    Microb Cell Fact; 2022 Apr; 21(1):62. PubMed ID: 35428308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil.
    Li Z; Li X; Liu T; Chen S; Liu H; Wang H; Li K; Song Y; Luo X; Zhao J; Zhang T
    Int J Biol Macromol; 2019 Jul; 133():316-323. PubMed ID: 30986455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis.
    Han N; Miao H; Ding J; Li J; Mu Y; Zhou J; Huang Z
    Biotechnol Biofuels; 2017; 10():133. PubMed ID: 28546828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge.
    Wang Y; Fu Z; Huang H; Zhang H; Yao B; Xiong H; Turunen O
    Bioresour Technol; 2012 May; 112():275-9. PubMed ID: 22425398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of mutants of GH11 xylanase from
    Bhat SK; Purushothaman K; Kini KR; Gopala Rao Appu Rao AR
    J Biomol Struct Dyn; 2022 Oct; 40(17):7666-7679. PubMed ID: 33749523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability.
    Stephens DE; Singh S; Permaul K
    FEMS Microbiol Lett; 2009 Apr; 293(1):42-7. PubMed ID: 19220468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies.
    Lai Z; Zhou C; Ma X; Xue Y; Ma Y
    Int J Biol Macromol; 2021 Feb; 170():164-177. PubMed ID: 33352153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution.
    Kumar S; Singh N; Mishra B; Dube D; Sinha M; Singh SB; Dey S; Kaur P; Sharma S; Singh TP
    BMC Struct Biol; 2010 Nov; 10():41. PubMed ID: 21092126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol.
    Wang H; Li Z; Liu H; Li S; Qiu H; Li K; Luo X; Song Y; Wang N; He H; Zhou H; Ma W; Zhang T
    Protein Expr Purif; 2017 Nov; 139():71-77. PubMed ID: 28602686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering non-conserved salt bridges in GH11 xylanase from
    Krishna Bhat S; Purushothaman K; Gopala Rao Appu Rao AR; Kini KR
    J Biomol Struct Dyn; 2023 Feb; 41(3):792-804. PubMed ID: 34877909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase.
    Wu X; Zhang S; Zhang Q; Zhao Y; Chen G; Guo W; Wang L
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8735-8745. PubMed ID: 32865611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus.
    Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S
    J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved thermostability, acid tolerance as well as catalytic efficiency of Streptomyces rameus L2001 GH11 xylanase by N-terminal replacement.
    Wu Q; Zhang C; Zhu W; Lu H; Li X; Yang Y; Xu Y; Li W
    Enzyme Microb Technol; 2023 Jan; 162():110143. PubMed ID: 36335858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. π-π stacking interaction is a key factor for the stability of GH11 xylanases at low pH.
    Ge HH; Qiu Y; Yi ZW; Zeng RY; Zhang GY
    Int J Biol Macromol; 2019 Mar; 124():895-902. PubMed ID: 30517843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.