These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32457778)
21. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). Lenz PRN; Beaulieu J; Mansfield SD; Clément S; Desponts M; Bousquet J BMC Genomics; 2017 Apr; 18(1):335. PubMed ID: 28454519 [TBL] [Abstract][Full Text] [Related]
22. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Zhang X; Pérez-Rodríguez P; Semagn K; Beyene Y; Babu R; López-Cruz MA; San Vicente F; Olsen M; Buckler E; Jannink JL; Prasanna BM; Crossa J Heredity (Edinb); 2015 Mar; 114(3):291-9. PubMed ID: 25407079 [TBL] [Abstract][Full Text] [Related]
23. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang A; Wang H; Beyene Y; Semagn K; Liu Y; Cao S; Cui Z; Ruan Y; Burgueño J; San Vicente F; Olsen M; Prasanna BM; Crossa J; Yu H; Zhang X Front Plant Sci; 2017; 8():1916. PubMed ID: 29167677 [TBL] [Abstract][Full Text] [Related]
24. Genome-Wide Analyses and Prediction of Resistance to MLN in Large Tropical Maize Germplasm. Nyaga C; Gowda M; Beyene Y; Muriithi WT; Makumbi D; Olsen MS; Suresh LM; Bright JM; Das B; Prasanna BM Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31877962 [TBL] [Abstract][Full Text] [Related]
25. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat. Juliana P; Singh RP; Singh PK; Crossa J; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724084 [TBL] [Abstract][Full Text] [Related]
26. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
27. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize ( Su C; Wang W; Gong S; Zuo J; Li S; Xu S Front Plant Sci; 2017; 8():706. PubMed ID: 28533786 [TBL] [Abstract][Full Text] [Related]
28. Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Cros D; Denis M; Sánchez L; Cochard B; Flori A; Durand-Gasselin T; Nouy B; Omoré A; Pomiès V; Riou V; Suryana E; Bouvet JM Theor Appl Genet; 2015 Mar; 128(3):397-410. PubMed ID: 25488416 [TBL] [Abstract][Full Text] [Related]
29. Selective Genotyping and Phenotyping for Optimization of Genomic Prediction Models for Populations with Different Diversity. Ćeran M; Đorđević V; Miladinović J; Vasiljević M; Đukić V; Ranđelović P; Jaćimović S Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611503 [TBL] [Abstract][Full Text] [Related]
30. Genomic Prediction of Biomass Yield in Two Selection Cycles of a Tetraploid Alfalfa Breeding Population. Li X; Wei Y; Acharya A; Hansen JL; Crawford JL; Viands DR; Michaud R; Claessens A; Brummer EC Plant Genome; 2015 Jul; 8(2):eplantgenome2014.12.0090. PubMed ID: 33228301 [TBL] [Abstract][Full Text] [Related]
31. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships. Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184 [TBL] [Abstract][Full Text] [Related]
32. Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel. Juliana P; He X; Marza F; Islam R; Anwar B; Poland J; Shrestha S; Singh GP; Chawade A; Joshi AK; Singh RP; Singh PK Front Plant Sci; 2021; 12():745379. PubMed ID: 35069614 [TBL] [Abstract][Full Text] [Related]
33. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415 [TBL] [Abstract][Full Text] [Related]
34. Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Roorkiwal M; Jarquin D; Singh MK; Gaur PM; Bharadwaj C; Rathore A; Howard R; Srinivasan S; Jain A; Garg V; Kale S; Chitikineni A; Tripathi S; Jones E; Robbins KR; Crossa J; Varshney RK Sci Rep; 2018 Aug; 8(1):11701. PubMed ID: 30076340 [TBL] [Abstract][Full Text] [Related]
35. Optimizing the allocation of resources for genomic selection in one breeding cycle. Riedelsheimer C; Melchinger AE Theor Appl Genet; 2013 Nov; 126(11):2835-48. PubMed ID: 23982591 [TBL] [Abstract][Full Text] [Related]
36. High-Throughput Sequencing With the Preselection of Markers Is a Good Alternative to SNP Chips for Genomic Prediction in Broilers. Liu T; Luo C; Ma J; Wang Y; Shu D; Su G; Qu H Front Genet; 2020; 11():108. PubMed ID: 32174971 [TBL] [Abstract][Full Text] [Related]
37. Genomic selection in admixed and crossbred populations. Toosi A; Fernando RL; Dekkers JC J Anim Sci; 2010 Jan; 88(1):32-46. PubMed ID: 19749023 [TBL] [Abstract][Full Text] [Related]
38. Using markers with large effect in genetic and genomic predictions. Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367 [TBL] [Abstract][Full Text] [Related]