These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32457881)

  • 1. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks.
    Zaroug A; Lai DTH; Mudie K; Begg R
    Front Bioeng Biotechnol; 2020; 8():362. PubMed ID: 32457881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of gait trajectories based on the Long Short Term Memory neural networks.
    Zaroug A; Garofolini A; Lai DTH; Mudie K; Begg R
    PLoS One; 2021; 16(8):e0255597. PubMed ID: 34351994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.
    Su B; Gutierrez-Farewik EM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy-based knee angle estimation using kinematics of thigh.
    Liang FY; Gao F; Liao WH
    Gait Posture; 2021 Sep; 89():25-30. PubMed ID: 34217950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Lower Limb Kinematics Using a Reduced Wearable Sensor Count.
    Sy L; Raitor M; Rosario MD; Khamis H; Kark L; Lovell NH; Redmond SJ
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1293-1304. PubMed ID: 32970590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closing the Wearable Gap: Foot-ankle kinematic modeling via deep learning models based on a smart sock wearable.
    Davarzani S; Saucier D; Talegaonkar P; Parker E; Turner A; Middleton C; Carroll W; Ball JE; Gurbuz A; Chander H; Burch RF; Smith BK; Knight A; Freeman C
    Wearable Technol; 2023; 4():e4. PubMed ID: 38487777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of altering attentional demands of gait control on the variability of temporal and kinematic parameters.
    Tanimoto K; Anan M; Sawada T; Takahashi M; Shinkoda K
    Gait Posture; 2016 Jun; 47():57-61. PubMed ID: 27264404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network.
    Choi A; Jung H; Lee KY; Lee S; Mun JH
    Med Biol Eng Comput; 2019 Dec; 57(12):2693-2703. PubMed ID: 31650342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Wearable Gait Monitoring Systems: Identifying Optimal Kinematic Inputs in Typical Adolescents.
    Kahlon AS; Verma K; Sage A; Lee SCK; Behboodi A
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands.
    Butt FM; Hussain L; Mahmood A; Lone KJ
    Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting machine's performance record using the stacked long short-term memory (LSTM) neural networks.
    Ma M; Liu C; Wei R; Liang B; Dai J
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13558. PubMed ID: 35170838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air quality index forecast in Beijing based on CNN-LSTM multi-model.
    Zhang J; Li S
    Chemosphere; 2022 Dec; 308(Pt 1):136180. PubMed ID: 36058367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.