These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32457907)

  • 1. Development of a Novel Hanging Drop Platform for Engineering Controllable 3D Microenvironments.
    Cho CY; Chiang TH; Hsieh LH; Yang WY; Hsu HH; Yeh CK; Huang CC; Huang JH
    Front Cell Dev Biol; 2020; 8():327. PubMed ID: 32457907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.
    Lin B; Miao Y; Wang J; Fan Z; Du L; Su Y; Liu B; Hu Z; Xing M
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5906-16. PubMed ID: 26886167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput scaffold-free microtissues through 3D printing.
    Boyer CJ; Ballard DH; Barzegar M; Winny Yun J; Woerner JE; Ghali GE; Boktor M; Wang Y; Steven Alexander J
    3D Print Med; 2018 Nov; 4(1):9. PubMed ID: 30649646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion.
    Zhou S; Yang J; Li R; Chen Y; Li C; Chen C; Tao Y; Fan S; Wu D; Wen L; Qiu B; Ding W
    Nano Lett; 2023 Dec; 23(23):10710-10718. PubMed ID: 38010943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues.
    Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR
    Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer.
    Brancato V; Comunanza V; Imparato G; Corà D; Urciuolo F; Noghero A; Bussolino F; Netti PA
    Acta Biomater; 2017 Feb; 49():152-166. PubMed ID: 27916739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting.
    Yipeng J; Yongde X; Yuanyi W; Jilei S; Jiaxiang G; Jiangping G; Yong Y
    Front Physiol; 2017; 8():534. PubMed ID: 28790931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput production of liver parenchymal microtissues and enrichment of organ-specific functions in gelatin methacrylamide microenvironment.
    Roopesh RP; Muthusamy S; Velayudhan S; Sabareeswaran A; Anil Kumar PR
    Biotechnol Bioeng; 2022 Mar; 119(3):1018-1032. PubMed ID: 34931302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels.
    Jahn P; Karger RK; Soso Khalaf S; Hamad S; Peinkofer G; Sahito RGA; Pieroth S; Nitsche F; Lu J; Derichsweiler D; Brockmeier K; Hescheler J; M Schmidt A; Pfannkuche K
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35617928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically controllable 3D microtissues based on magnetic microcryogels.
    Liu W; Li Y; Feng S; Ning J; Wang J; Gou M; Chen H; Xu F; Du Y
    Lab Chip; 2014 Aug; 14(15):2614-25. PubMed ID: 24736804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks.
    Misun PM; Rothe J; Schmid YRF; Hierlemann A; Frey O
    Microsyst Nanoeng; 2016; 2():16022. PubMed ID: 31057823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spheroid Engineering in Microfluidic Devices.
    Tevlek A; Kecili S; Ozcelik OS; Kulah H; Tekin HC
    ACS Omega; 2023 Jan; 8(4):3630-3649. PubMed ID: 36743071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.
    Martinez I; Elvenes J; Olsen R; Bertheussen K; Johansen O
    Cell Transplant; 2008; 17(8):987-96. PubMed ID: 19069640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems.
    Brancato V; Gioiella F; Profeta M; Imparato G; Guarnieri D; Urciuolo F; Melone P; Netti PA
    Acta Biomater; 2017 Jul; 57():47-58. PubMed ID: 28483691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering liver microtissues for disease modeling and regenerative medicine.
    Huang D; Gibeley SB; Xu C; Xiao Y; Celik O; Ginsberg HN; Leong KW
    Adv Funct Mater; 2020 Oct; 30(44):. PubMed ID: 33390875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop Networks.
    Schmid YRF; Bürgel SC; Misun PM; Hierlemann A; Frey O
    ACS Sens; 2016 Jul; 1(8):1028-1035. PubMed ID: 33851029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.
    Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ
    Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
    Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA
    Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.