These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32457940)

  • 1. Integration of Heterogeneous Experimental Data Improves Global Map of Human Protein Complexes.
    Lugo-Martinez J; Bar-Joseph Z; Dengjel J; Murphy RF
    ACM BCB; 2019 Sep; 2019():144-153. PubMed ID: 32457940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C; Mella C; Navarro G; Olivera-Nappa A; Araya J
    PLoS One; 2017; 12(9):e0183460. PubMed ID: 28937982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying protein complexes from heterogeneous biological data.
    Wu M; Xie Z; Li X; Kwoh CK; Zheng J
    Proteins; 2013 Nov; 81(11):2023-33. PubMed ID: 23852772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH; Wong L
    Biol Direct; 2015 Aug; 10():40. PubMed ID: 26231465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes.
    Drew K; Lee C; Huizar RL; Tu F; Borgeson B; McWhite CD; Ma Y; Wallingford JB; Marcotte EM
    Mol Syst Biol; 2017 Jun; 13(6):932. PubMed ID: 28596423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein complexes by data integration of different types of interactions.
    Tan PP; Dargahi D; Pio F
    Int J Comput Biol Drug Des; 2010; 3(1):19-30. PubMed ID: 20693608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of protein complexes from multiple protein interaction networks using graph embedding.
    Liu X; Yang Z; Sang S; Lin H; Wang J; Xu B
    Artif Intell Med; 2019 May; 96():107-115. PubMed ID: 31164203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CPredictor3.0: detecting protein complexes from PPI networks with expression data and functional annotations.
    Xu Y; Zhou J; Zhou S; Guan J
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):135. PubMed ID: 29322927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes.
    Liu Q; Song J; Li J
    Sci Rep; 2016 Feb; 6():21223. PubMed ID: 26868667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks.
    Xiao Q; Luo P; Li M; Wang J; Wu FX
    Proteomics; 2019 Mar; 19(5):e1800129. PubMed ID: 30650262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L; Chan KC
    BMC Bioinformatics; 2015 May; 16():174. PubMed ID: 26013799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon sequestration in Synechococcus Sp.: from molecular machines to hierarchical modeling.
    Heffelfinger GS; Martino A; Gorin A; Xu Y; Rintoul MD; Geist A; Al-Hashimi HM; Davidson GS; Faulon JL; Frink LJ; Haaland DM; Hart WE; Jakobsson E; Lane T; Li M; Locascio P; Olken F; Olman V; Palenik B; Plimpton SJ; Roe DC; Samatova NF; Shah M; Shoshoni A; Strauss CE; Thomas EV; Timlin JA; Xu D
    OMICS; 2002; 6(4):305-30. PubMed ID: 12626091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ConnectedAlign: a PPI network alignment method for identifying conserved protein complexes across multiple species.
    Gao J; Song B; Hu X; Yan F; Wang J
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):286. PubMed ID: 30367584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of clustering algorithms for protein-protein interaction networks.
    Brohée S; van Helden J
    BMC Bioinformatics; 2006 Nov; 7():488. PubMed ID: 17087821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting complexes from edge-weighted PPI networks via genes expression analysis.
    Zhang Z; Song J; Tang J; Xu X; Guo F
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):40. PubMed ID: 29745859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):879-86. PubMed ID: 26357329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.