These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 32458436)
41. [Two-Dimensional Hetero-Spectral Near-Infrared and Mid-Infrared Correlation Spectroscopy for Discrimination Adulterated Milk]. Yu G; Yang RJ; Lü AJ; Tan EZ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2099-102. PubMed ID: 26672274 [TBL] [Abstract][Full Text] [Related]
42. Analysis of trace metal concentrations in raw cow's milk from three dairy farms in North Gondar, Ethiopia: chemometric approach. Akele ML; Abebe DZ; Alemu AK; Assefa AG; Madhusudhan A; de Oliveira RR Environ Monit Assess; 2017 Sep; 189(10):499. PubMed ID: 28895007 [TBL] [Abstract][Full Text] [Related]
43. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Nian Y; Zhao M; O'Donnell CP; Downey G; Kerry JP; Allen P Food Res Int; 2017 Sep; 99(Pt 1):778-789. PubMed ID: 28784544 [TBL] [Abstract][Full Text] [Related]
44. Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt. Karacaglar NNY; Bulat T; Boyaci IH; Topcu A J Food Drug Anal; 2019 Jan; 27(1):101-110. PubMed ID: 30648563 [TBL] [Abstract][Full Text] [Related]
45. Discrimination of adulterated milk using temperature-perturbed two-dimensional infrared correlation spectroscopy and multivariate analysis. Huang MY; Yang RJ; Zheng ZY; Wu HY; Yang YR Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121342. PubMed ID: 35550994 [TBL] [Abstract][Full Text] [Related]
46. Assessment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow's, goat's, and sheep's milk. Klotz V; Hill A; Warriner K; Griffiths M; Odumeru J J Food Prot; 2008 Sep; 71(9):1884-8. PubMed ID: 18810873 [TBL] [Abstract][Full Text] [Related]
47. On the discrimination between facial creams of different brands using Raman Spectroscopy and partial least squares discriminant analysis for forensic application. Asri MNM; Verma R; Ibrahim MH; Nor NAM; Sharma V; Ismail D Sci Justice; 2021 Nov; 61(6):687-696. PubMed ID: 34802642 [TBL] [Abstract][Full Text] [Related]
48. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Santos PM; Pereira-Filho ER; Rodriguez-Saona LE Food Chem; 2013 May; 138(1):19-24. PubMed ID: 23265450 [TBL] [Abstract][Full Text] [Related]
49. [Application of Raman Spectroscopy and Pattern Recognition Methods for Determining the Authenticity and Detecting the Adulteration of Milk Powder]. Wang HY; Song C; Liu J; Zhang ZY; Xie WL; Li LP; Sha M Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):124-8. PubMed ID: 30195279 [TBL] [Abstract][Full Text] [Related]
50. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Cirak O; Icyer NC; Durak MZ J Dairy Res; 2018 May; 85(2):222-225. PubMed ID: 29785908 [TBL] [Abstract][Full Text] [Related]
51. N-glycan profiles as a tool in qualitative and quantitative analysis of goat milk adulteration. Liu Y; Hu X; Voglmeir J; Liu L Food Chem; 2023 Oct; 423():136116. PubMed ID: 37182487 [TBL] [Abstract][Full Text] [Related]
52. Application of chemometrics for detection and modeling of adulteration of fresh cow milk with reconstituted skim milk powder using voltammetric fingerpriting on a graphite/ SiO Nikolaou P; Deskoulidis E; Topoglidis E; Kakoulidou AT; Tsopelas F Talanta; 2020 Jan; 206():120223. PubMed ID: 31514874 [TBL] [Abstract][Full Text] [Related]
53. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE J Dairy Sci; 2016 Apr; 99(4):2520-2536. PubMed ID: 26874427 [TBL] [Abstract][Full Text] [Related]
54. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Kasemsumran S; Thanapase W; Kiatsoonthon A Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339 [TBL] [Abstract][Full Text] [Related]
55. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Boyacı İH; Temiz HT; Uysal RS; Velioğlu HM; Yadegari RJ; Rishkan MM Food Chem; 2014 Apr; 148():37-41. PubMed ID: 24262523 [TBL] [Abstract][Full Text] [Related]
56. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686 [TBL] [Abstract][Full Text] [Related]
57. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
58. FTIR spectroscopy with chemometrics for determination of tylosin residues in milk. de Freitas AG; de Magalhães BE; Minho LA; Leão DJ; Santos LS; Augusto de Albuquerque Fernandes S J Sci Food Agric; 2021 Mar; 101(5):1854-1860. PubMed ID: 32901945 [TBL] [Abstract][Full Text] [Related]
59. Proteolysis, lipolysis, volatile compounds and sensory characteristics of Hispánico cheeses made using frozen curd from raw and pasteurized ewe milk. Alonso R; Picon A; Gaya P; Nuñez M J Dairy Res; 2013 Feb; 80(1):51-7. PubMed ID: 23253470 [TBL] [Abstract][Full Text] [Related]
60. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk. Tayyarcan EK; Acar Soykut E; Boyaci IH Folia Microbiol (Praha); 2018 Sep; 63(5):627-636. PubMed ID: 29644510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]