These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32458837)
1. A paper-based conductive immunosensor for the determination of Salmonella Typhimurium. Wonsawat W; Limvongjaroen S; Supromma S; Panphut W; Ruecha N; Ratnarathorn N; Dungchai W Analyst; 2020 Jul; 145(13):4637-4645. PubMed ID: 32458837 [TBL] [Abstract][Full Text] [Related]
2. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Salam F; Uludag Y; Tothill IE Talanta; 2013 Oct; 115():761-7. PubMed ID: 24054660 [TBL] [Abstract][Full Text] [Related]
3. Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Srisa-Art M; Boehle KE; Geiss BJ; Henry CS Anal Chem; 2018 Jan; 90(1):1035-1043. PubMed ID: 29211962 [TBL] [Abstract][Full Text] [Related]
4. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Barreiros dos Santos M; Azevedo S; Agusil JP; Prieto-Simón B; Sporer C; Torrents E; Juárez A; Teixeira V; Samitier J Bioelectrochemistry; 2015 Feb; 101():146-52. PubMed ID: 25460610 [TBL] [Abstract][Full Text] [Related]
5. Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles. Khan SA; Singh AK; Senapati D; Fan Z; Ray PC Chem Commun (Camb); 2011 Sep; 47(33):9444-6. PubMed ID: 21776500 [TBL] [Abstract][Full Text] [Related]
6. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Wang R; Ni Y; Xu Y; Jiang Y; Dong C; Chuan N Anal Chim Acta; 2015 Jan; 853():710-717. PubMed ID: 25467522 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic immunosensor for visual detection of foodborne bacteria using immunomagnetic separation, enzymatic catalysis and distance indication. Cai G; Zheng L; Liao M; Li Y; Wang M; Liu N; Lin J Mikrochim Acta; 2019 Nov; 186(12):757. PubMed ID: 31707541 [TBL] [Abstract][Full Text] [Related]
8. In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Silva NFD; Magalhães JMCS; Barroso MF; Oliva-Teles T; Freire C; Delerue-Matos C Talanta; 2019 Mar; 194():134-142. PubMed ID: 30609512 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Nanoparticles-based Aptasensor Using Gold Nanoparticles as Colorimetric Probes for the Detection of Salmonella typhimurium. Duan N; Xu B; Wu S; Wang Z Anal Sci; 2016; 32(4):431-6. PubMed ID: 27063716 [TBL] [Abstract][Full Text] [Related]
10. Detection of Salmonella typhimurium using an electrochemical immunosensor. Salam F; Tothill IE Biosens Bioelectron; 2009 Apr; 24(8):2630-6. PubMed ID: 19233634 [TBL] [Abstract][Full Text] [Related]
11. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Dong J; Zhao H; Xu M; Ma Q; Ai S Food Chem; 2013 Dec; 141(3):1980-6. PubMed ID: 23870918 [TBL] [Abstract][Full Text] [Related]
12. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. Wen T; Wang R; Sotero A; Li Y Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28846643 [No Abstract] [Full Text] [Related]
13. Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Mutreja R; Jariyal M; Pathania P; Sharma A; Sahoo DK; Suri CR Biosens Bioelectron; 2016 Nov; 85():707-713. PubMed ID: 27261886 [TBL] [Abstract][Full Text] [Related]
14. A paper-supported sandwich immunosensor based on upconversion luminescence resonance energy transfer for the visual and quantitative determination of a cancer biomarker in human serum. He M; Shang N; Shen L; Liu Z Analyst; 2020 Jun; 145(12):4181-4187. PubMed ID: 32400772 [TBL] [Abstract][Full Text] [Related]
15. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Yi J; Wu P; Li G; Xiao W; Li L; He Y; He Y; Ding P; Chen C Mikrochim Acta; 2019 Oct; 186(11):711. PubMed ID: 31650251 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. Karami P; Khoshsafar H; Johari-Ahar M; Arduini F; Afkhami A; Bagheri H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117218. PubMed ID: 31174151 [TBL] [Abstract][Full Text] [Related]
17. A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Guo X; Lin CS; Chen SH; Ye R; Wu VC Biosens Bioelectron; 2012; 38(1):177-83. PubMed ID: 22683250 [TBL] [Abstract][Full Text] [Related]
18. Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella typhimurium. Freitas M; Viswanathan S; Nouws HP; Oliveira MB; Delerue-Matos C Biosens Bioelectron; 2014 Jan; 51():195-200. PubMed ID: 23962706 [TBL] [Abstract][Full Text] [Related]
20. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Wang Y; Xu H; Luo J; Liu J; Wang L; Fan Y; Yan S; Yang Y; Cai X Biosens Bioelectron; 2016 Sep; 83():319-26. PubMed ID: 27132007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]