BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32458880)

  • 1. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach.
    Rezvantalab S; Keshavarz Moraveji M; Khedri M; Maleki R
    Soft Matter; 2020 Jun; 16(22):5250-5260. PubMed ID: 32458880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular engineering of drugs loading in Riboflavin-targeted polymeric devices: simulation and experimental.
    Khedri M; Keshavarz Moraveji M
    Sci Rep; 2022 Mar; 12(1):5119. PubMed ID: 35332259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ligand conjugation site on the micellization of Bio-Targeted PLGA-Based nanohybrids: A computational biology approach.
    Khedri M; Rezvantalab S; Maleki R; Rezaei N
    J Biomol Struct Dyn; 2022 Jul; 40(10):4409-4418. PubMed ID: 33336619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles.
    Valencia PM; Hanewich-Hollatz MH; Gao W; Karim F; Langer R; Karnik R; Farokhzad OC
    Biomaterials; 2011 Sep; 32(26):6226-33. PubMed ID: 21658757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance.
    Abelha TF; Neumann PR; Holthof J; Dreiss CA; Alexander C; Green M; Dailey LA
    J Mater Chem B; 2019 Sep; 7(33):5115-5124. PubMed ID: 31363720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin.
    Samkange T; D'Souza S; Obikeze K; Dube A
    J Pharm Pharmacol; 2019 Oct; 71(10):1497-1507. PubMed ID: 31385295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers.
    Raposo CD; Conceição CA; Barros MT
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32290160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.
    Gu F; Zhang L; Teply BA; Mann N; Wang A; Radovic-Moreno AF; Langer R; Farokhzad OC
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2586-91. PubMed ID: 18272481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Camouflaging Nanoparticles for Ratiometric Delivery of Therapeutic Combinations.
    Meng F; Wang J; Ping Q; Yeo Y
    Nano Lett; 2019 Mar; 19(3):1479-1487. PubMed ID: 30707035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLGA-PEG Nanoparticles Show Minimal Risks of Interference with Platelet Function of Human Platelet-Rich Plasma.
    Bakhaidar R; O'Neill S; Ramtoola Z
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRITC-Loaded PLGA Nanoparticles as Drug Delivery Carriers in Mouse Oocytes and Embryos.
    Kim HJ; Lee S; Lee JH; Park JM; Hong SJ; Lee OH; Park JS; Choi Y; Park KH
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):5975-5988. PubMed ID: 33502166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery.
    Wei K; Peng X; Zou F
    Int J Pharm; 2014 Apr; 464(1-2):225-33. PubMed ID: 24463073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEGylation strategies for active targeting of PLA/PLGA nanoparticles.
    Betancourt T; Byrne JD; Sunaryo N; Crowder SW; Kadapakkam M; Patel S; Casciato S; Brannon-Peppas L
    J Biomed Mater Res A; 2009 Oct; 91(1):263-76. PubMed ID: 18980197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile.
    Rafiei P; Haddadi A
    Int J Nanomedicine; 2017; 12():935-947. PubMed ID: 28184163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.
    Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B
    Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
    Chan JM; Zhang L; Yuet KP; Liao G; Rhee JW; Langer R; Farokhzad OC
    Biomaterials; 2009 Mar; 30(8):1627-34. PubMed ID: 19111339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and uptake of PEG-coated, muco-inert nanoparticles in HGC-27 cells, a mucin-producing, gastric-cancer cell line.
    Lin D; Li G; Qin L; Wen Z; Wang J; Sun X
    J Biomed Nanotechnol; 2013 Dec; 9(12):2017-23. PubMed ID: 24266257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats.
    S S; S M; P S L S; S S; S B; V P
    Int J Biol Macromol; 2017 Feb; 95():1190-1198. PubMed ID: 27825822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.