BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32458909)

  • 1. Heteroatom-participated lignin cleavage to functionalized aromatics.
    Li H; Bunrit A; Li N; Wang F
    Chem Soc Rev; 2020 Jun; 49(12):3748-3763. PubMed ID: 32458909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Triflates for the Production of Aromatics from Lignin.
    Deuss PJ; Lahive CW; Lancefield CS; Westwood NJ; Kamer PC; Barta K; de Vries JG
    ChemSusChem; 2016 Oct; 9(20):2974-2981. PubMed ID: 27650221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin-to-chemicals: Application of catalytic hydrogenolysis of lignin to produce phenols and terephthalic acid via metal-based catalysts.
    Tang D; Huang X; Tang W; Jin Y
    Int J Biol Macromol; 2021 Nov; 190():72-85. PubMed ID: 34480907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products.
    Khan RJ; Lau CY; Guan J; Lam CH; Zhao J; Ji Y; Wang H; Xu J; Lee DJ; Leu SY
    Bioresour Technol; 2022 Feb; 346():126419. PubMed ID: 34838966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics.
    Yu X; Wei Z; Lu Z; Pei H; Wang H
    Bioresour Technol; 2019 Nov; 291():121885. PubMed ID: 31377049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery.
    Cao Y; Chen SS; Zhang S; Ok YS; Matsagar BM; Wu KC; Tsang DCW
    Bioresour Technol; 2019 Nov; 291():121878. PubMed ID: 31377047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative cleavage of C-C bonds in lignin.
    Subbotina E; Rukkijakan T; Marquez-Medina MD; Yu X; Johnsson M; Samec JSM
    Nat Chem; 2021 Nov; 13(11):1118-1125. PubMed ID: 34556848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis.
    Weng C; Peng X; Han Y
    Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin Depolymerization to BTXs.
    Serrano L; Cecilia JA; García-Sancho C; García A
    Top Curr Chem (Cham); 2019 Sep; 377(5):26. PubMed ID: 31529210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels.
    Kumaravel S; Thiruvengetam P; Karthick K; Sankar SS; Karmakar A; Kundu S
    Biotechnol Prog; 2021 Mar; 37(2):e3111. PubMed ID: 33336509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction.
    Zhang B; Guo T; Li Z; Kühn FE; Lei M; Zhao ZK; Xiao J; Zhang J; Xu D; Zhang T; Li C
    Nat Commun; 2022 Jun; 13(1):3365. PubMed ID: 35690613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-Metal-Free Synthesis of Functionalized Quinolines by Direct Conversion of β-O-4 Model Compounds.
    Ding Y; Guo T; Li Z; Zhang B; Kühn FE; Liu C; Zhang J; Xu D; Lei M; Zhang T; Li C
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202206284. PubMed ID: 35869027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tungsten Carbide: A Remarkably Efficient Catalyst for the Selective Cleavage of Lignin C-O Bonds.
    Guo H; Zhang B; Li C; Peng C; Dai T; Xie H; Wang A; Zhang T
    ChemSusChem; 2016 Nov; 9(22):3220-3229. PubMed ID: 27791336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin materials for adsorption: Current trend, perspectives and opportunities.
    Supanchaiyamat N; Jetsrisuparb K; Knijnenburg JTN; Tsang DCW; Hunt AJ
    Bioresour Technol; 2019 Jan; 272():570-581. PubMed ID: 30352730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products.
    Becker J; Wittmann C
    Biotechnol Adv; 2019 Nov; 37(6):107360. PubMed ID: 30959173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin valorization through integrated biological funneling and chemical catalysis.
    Linger JG; Vardon DR; Guarnieri MT; Karp EM; Hunsinger GB; Franden MA; Johnson CW; Chupka G; Strathmann TJ; Pienkos PT; Beckham GT
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12013-8. PubMed ID: 25092344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.