These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32458920)

  • 1. Single chain in mean field simulation of flexible and semiflexible polymers: comparison with discrete chain self-consistent field theory.
    Park SJ; Kim JU
    Soft Matter; 2020 Jun; 16(22):5233-5249. PubMed ID: 32458920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical implementation of pseudo-spectral method in self-consistent mean field theory for discrete polymer chains.
    Park SJ; Yong D; Kim Y; Kim JU
    J Chem Phys; 2019 Jun; 150(23):234901. PubMed ID: 31228900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations.
    Daoulas KCh; Müller M
    J Chem Phys; 2006 Nov; 125(18):184904. PubMed ID: 17115792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles.
    Huang A; Hsu HP; Bhattacharya A; Binder K
    J Chem Phys; 2015 Dec; 143(24):243102. PubMed ID: 26723587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle shape transitions in block copolymer/homopolymer blends: comparison of self-consistent field theory with experiment.
    Greenall MJ; Buzza DM; McLeish TC
    J Chem Phys; 2009 Jul; 131(3):034904. PubMed ID: 19624230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields.
    Manca F; Giordano S; Palla PL; Cleri F; Colombo L
    J Chem Phys; 2012 Dec; 137(24):244907. PubMed ID: 23277956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Chain Mean-Field Theory Study on Responsive Behavior of Semiflexible Polymer Brush.
    Niu Y; Bu X; Zhang X
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers.
    Bergsma J; Leermakers FAM; Kleijn JM; van der Gucht J
    J Chem Theory Comput; 2018 Dec; 14(12):6532-6543. PubMed ID: 30362745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation.
    Zablotskiy SV; Martemyanova JA; Ivanov VA; Paul W
    J Chem Phys; 2016 Jun; 144(24):244903. PubMed ID: 27369540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Persistence Length of Semiflexible Polymers in Lattice Monte Carlo Simulations.
    Zhang JZ; Peng XY; Liu S; Jiang BP; Ji SC; Shen XC
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-theoretic simulations of random copolymers with structural rigidity.
    Mao S; MacPherson Q; Qin J; Spakowitz AJ
    Soft Matter; 2017 Apr; 13(15):2760-2772. PubMed ID: 28338151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of diblock copolymer surfactants. III. Equilibrium interfacial adsorption.
    Mysona JA; McCormick AV; Morse DC
    Phys Rev E; 2020 Aug; 102(2-1):022605. PubMed ID: 32942390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of polymer brushes.
    Chen CM; Fwu YA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011506. PubMed ID: 11304265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of short polymers at interfaces: a combined simulation and theoretical study.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2004 Sep; 121(10):4865-73. PubMed ID: 15332922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chain stiffness on the entropic segregation of chain ends to the surface of a polymer melt.
    Blaber S; Mahmoudi P; Spencer RKW; Matsen MW
    J Chem Phys; 2019 Jan; 150(1):014904. PubMed ID: 30621404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottlebrush Block Polymers: Quantitative Theory and Experiments.
    Dalsin SJ; Rions-Maehren TG; Beam MD; Bates FS; Hillmyer MA; Matsen MW
    ACS Nano; 2015 Dec; 9(12):12233-45. PubMed ID: 26544636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent field theory simulations of block copolymer assembly on a sphere.
    Chantawansri TL; Bosse AW; Hexemer A; Ceniceros HD; García-Cervera CJ; Kramer EJ; Fredrickson GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031802. PubMed ID: 17500717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Electric Field Effects on Defect-Free Self-Assembled Nano-Patterning of Block Copolymer.
    Kim SK
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2706-9. PubMed ID: 27455694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coil-globule transition for regular, random, and specially designed copolymers: Monte Carlo simulation and self-consistent field theory.
    Oever JM; Leermakers FA; Fleer GJ; Ivanov VA; Shusharina NP; Khokhlov AR; Khalatur PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041708. PubMed ID: 12005847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of melt polyelectrolyte blends and block copolymers: phase behavior, surface tension, and microphase periodicity.
    Sing CE; Zwanikken JW; Olvera de la Cruz M
    J Chem Phys; 2015 Jan; 142(3):034902. PubMed ID: 25612728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.