These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32458928)

  • 1. Nonadiabatic sunlight harvesting.
    Calderón LF; Pachón LA
    Phys Chem Chem Phys; 2020 Jun; 22(22):12678-12687. PubMed ID: 32458928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center.
    Novoderezhkin VI; Romero E; Prior J; van Grondelle R
    Phys Chem Chem Phys; 2017 Feb; 19(7):5195-5208. PubMed ID: 28149991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature.
    Novelli F; Nazir A; Richards GH; Roozbeh A; Wilk KE; Curmi PM; Davis JA
    J Phys Chem Lett; 2015 Nov; 6(22):4573-80. PubMed ID: 26528956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: the electronic Davydov splittings cannot match experiment.
    Ottiger P; Leutwyler S; Köppel H
    J Chem Phys; 2012 May; 136(17):174308. PubMed ID: 22583231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing.
    Yeh SH; Hoehn RD; Allodi MA; Engel GS; Kais S
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18263-18268. PubMed ID: 30093387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes.
    Chenu A; Christensson N; Kauffmann HF; Mančal T
    Sci Rep; 2013; 3():2029. PubMed ID: 23778355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer.
    Sohail SH; Otto JP; Cunningham PD; Kim YC; Wood RE; Allodi MA; Higgins JS; Melinger JS; Engel GS
    Chem Sci; 2020 Jul; 11(32):8546-8557. PubMed ID: 34123114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates.
    Butkus V; Valkunas L; Abramavicius D
    J Chem Phys; 2014 Jan; 140(3):034306. PubMed ID: 25669378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards quantification of vibronic coupling in photosynthetic antenna complexes.
    Singh VP; Westberg M; Wang C; Dahlberg PD; Gellen T; Gardiner AT; Cogdell RJ; Engel GS
    J Chem Phys; 2015 Jun; 142(21):212446. PubMed ID: 26049466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic-Vibrational Resonance Does Not Significantly Alter Steady-State Transport in Natural Light-Harvesting Systems.
    Calderón LF; Chuang C; Brumer P
    J Phys Chem Lett; 2023 Feb; 14(6):1436-1444. PubMed ID: 36734680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular vibrations enhance the quantum efficiency of excitonic energy transfer.
    Duan HG; Nalbach P; Miller RJD; Thorwart M
    Photosynth Res; 2020 May; 144(2):137-145. PubMed ID: 32306173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions?
    Duan HG; Thorwart M; Miller RJD
    J Chem Phys; 2019 Sep; 151(11):114115. PubMed ID: 31542003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas.
    Zhu R; Li W; Zhen Z; Zou J; Liao G; Wang J; Wang Z; Chen H; Qin S; Weng Y
    Nat Commun; 2024 Apr; 15(1):3171. PubMed ID: 38609379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent Energy Transfer under Incoherent Light Conditions.
    Fassioli F; Olaya-Castro A; Scholes GD
    J Phys Chem Lett; 2012 Nov; 3(21):3136-42. PubMed ID: 26296019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational and Nonadiabatic Coherence in 2D Electronic Spectroscopy, the Jahn-Teller Effect, and Energy Transfer.
    Jonas DM
    Annu Rev Phys Chem; 2018 Apr; 69():327-352. PubMed ID: 29677467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions.
    Lee MH; Troisi A
    J Chem Phys; 2017 Feb; 146(7):075101. PubMed ID: 28228034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex.
    Schulze J; Shibl MF; Al-Marri MJ; Kühn O
    J Chem Phys; 2016 May; 144(18):185101. PubMed ID: 27179506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.
    Ferretti M; Novoderezhkin VI; Romero E; Augulis R; Pandit A; Zigmantas D; van Grondelle R
    Phys Chem Chem Phys; 2014 Jun; 16(21):9930-9. PubMed ID: 24430275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.
    Novoderezhkin VI; Romero E; van Grondelle R
    Phys Chem Chem Phys; 2015 Dec; 17(46):30828-41. PubMed ID: 25854607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.