These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32459088)

  • 1. Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media.
    Johnson WP
    Environ Sci Technol; 2020 Jul; 54(13):8032-8042. PubMed ID: 32459088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anionic nanoparticle and microplastic non-exponential distributions from source scale with grain size in environmental granular media.
    Johnson WP; Rasmuson A; Ron C; Erickson B; VanNess K; Bolster D; Peters B
    Water Res; 2020 Sep; 182():116012. PubMed ID: 32730996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists.
    Johnson WP; Rasmuson A; PazmiƱo E; Hilpert M
    Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale.
    Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogen Prevalence in Fractured versus Granular Aquifers and the Role of Forward Flow Stagnation Zones on Pore-Scale Delivery to Surfaces.
    Rasmuson A; Erickson B; Borchardt M; Muldoon M; Johnson WP
    Environ Sci Technol; 2020 Jan; 54(1):137-145. PubMed ID: 31770489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of colloid particles onto interfaces in partially saturated sand.
    Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS
    Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization.
    Li T; Shen C; Johnson WP; Ma H; Jin C; Zhang C; Chu X; Ma K; Xing B
    Environ Sci Technol; 2022 Apr; 56(7):4121-4131. PubMed ID: 35312300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion.
    Oswald JG; Ibaraki M
    J Contam Hydrol; 2001 Nov; 52(1-4):213-44. PubMed ID: 11695742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid transport in porous media: impact of hyper-saline solutions.
    Magal E; Weisbrod N; Yechieli Y; Walker SL; Yakirevich A
    Water Res; 2011 May; 45(11):3521-32. PubMed ID: 21550095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale quantification of colloid transport in saturated porous media.
    Smith J; Gao B; Funabashi H; Tran TN; Luo D; Ahner BA; Steenhuis TS; Hay AG; Walter MT
    Environ Sci Technol; 2008 Jan; 42(2):517-23. PubMed ID: 18284156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated transport of microplastics and nonylphenol in porous media with variations in physicochemical heterogeneity.
    Xu L; Liang Y; Zhang R; Xu B; Liao C; Xie T; Wang D
    Environ Pollut; 2022 Dec; 315():120297. PubMed ID: 36181937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling.
    Vitorge E; Szenknect S; Martins JM; Gaudet JP
    Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-scale framework for modeling transport of microplastics during sand filtration: Bridging from pore to continuum.
    Lim SJ; Seo J; Hwang M; Kim HC; Kim EJ; Lee J; Hong SW; Lee S; Chung J
    J Hazard Mater; 2023 Feb; 443(Pt A):130219. PubMed ID: 36367474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.