BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32459270)

  • 21. Nickel metal-organic frameworks for visible-light CO
    Chen L; Yang J; Yang W; Xian J; Li G
    Dalton Trans; 2022 May; 51(20):7950-7956. PubMed ID: 35543568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Metal-Free Donor-Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO
    Lei K; Wang D; Ye L; Kou M; Deng Y; Ma Z; Wang L; Kong Y
    ChemSusChem; 2020 Apr; 13(7):1725-1729. PubMed ID: 31958209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tandem Photocatalysis of CO
    Xu R; Si DH; Zhao SS; Wu QJ; Wang XS; Liu TF; Zhao H; Cao R; Huang YB
    J Am Chem Soc; 2023 Apr; 145(14):8261-8270. PubMed ID: 36976930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Efficient and Selective Visible-light Photocatalytic CO
    Wang L; Zhang H; Zhang Z; Zhang J; He Y; Li Q; Bao J; Fang M; Wu Y
    Chem Asian J; 2023 Aug; 18(15):e202300297. PubMed ID: 37303300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst.
    Liang W; Church TL; Zheng S; Zhou C; Haynes BS; D'Alessandro DM
    Chemistry; 2015 Dec; 21(51):18576-9. PubMed ID: 26538203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tweaking Photo CO
    Paul R; Das R; Das N; Chakraborty S; Pao CW; Thang Trinh Q; Kalhara Gunasooriya GTK; Mondal J; Peter SC
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202311304. PubMed ID: 37872849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst.
    Zhang J; She P; Xu Q; Tian F; Rao H; Qin JS; Bonin J; Robert M
    ChemSusChem; 2024 Feb; ():e202301892. PubMed ID: 38324459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocatalytic CO
    Arikawa Y; Tabata I; Miura Y; Tajiri H; Seto Y; Horiuchi S; Sakuda E; Umakoshi K
    Chemistry; 2020 May; 26(25):5603-5606. PubMed ID: 32012368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photocatalytic Conversion of CO
    Guo Z; Yu F; Yang Y; Leung CF; Ng SM; Ko CC; Cometto C; Lau TC; Robert M
    ChemSusChem; 2017 Oct; 10(20):4009-4013. PubMed ID: 28840967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zero-Dimensional-g-CNQD-Coordinated Two-Dimensional Porphyrin MOF Hybrids for Boosting Photocatalytic CO
    Zheng C; Qiu X; Han J; Wu Y; Liu S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42243-42249. PubMed ID: 31638762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction.
    Ding X; Yu B; Han B; Wang H; Zheng T; Chen B; Wang J; Yu Z; Sun T; Fu X; Qi D; Jiang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8048-8057. PubMed ID: 35119827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO.
    Schneider J; Vuong KQ; Calladine JA; Sun XZ; Whitwood AC; George MW; Perutz RN
    Inorg Chem; 2011 Dec; 50(23):11877-89. PubMed ID: 22043811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encapsulation of Single Iron Sites in a Metal-Porphyrin Framework for High-Performance Photocatalytic CO
    Wang SS; Huang HH; Liu M; Yao S; Guo S; Wang JW; Zhang ZM; Lu TB
    Inorg Chem; 2020 May; 59(9):6301-6307. PubMed ID: 32286802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photonic Switching Porous Organic Polymers toward Reversible Control of Heterogeneous Photocatalysis.
    Sun N; Wang C; Wang H; Gao X; Jiang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56491-56498. PubMed ID: 33263980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO
    Zhong W; Sa R; Li L; He Y; Li L; Bi J; Zhuang Z; Yu Y; Zou Z
    J Am Chem Soc; 2019 May; 141(18):7615-7621. PubMed ID: 30998334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective Integrating Molecular Catalytic Units into Bipyridine-Based Covalent Organic Frameworks for Specific Photocatalytic Fuel Production.
    Song D; Xu W; He W; Li C; Yang J; Li J; Wang N
    Inorg Chem; 2024 Feb; 63(7):3444-3451. PubMed ID: 38331715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron(iii)-bipyridine incorporated metal-organic frameworks for photocatalytic reduction of CO
    Wei YP; Yang S; Wang P; Guo JH; Huang J; Sun WY
    Dalton Trans; 2021 Jan; 50(1):384-390. PubMed ID: 33320135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with azobis(2,2'-bipyridine)s.
    Otsuki J; Omokawa N; Yoshiba K; Yoshikawa I; Akasaka T; Suenobu T; Takido T; Araki K; Fukuzumi S
    Inorg Chem; 2003 May; 42(9):3057-66. PubMed ID: 12716201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic H
    Boro B; Kim N; Kim JS; Paul R; Nailwal Y; Choi Y; Seo DH; Mondal J; Ryu J
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1784-1792. PubMed ID: 37683406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective photocatalytic CO
    Shit SC; Powar NS; Kalita P; Paul R; Xu S; Jung JW; Cho CH; In SI; Mondal J
    Chem Commun (Camb); 2022 Dec; 58(99):13716-13719. PubMed ID: 36315250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.