BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 32459462)

  • 21. Three-dimensional plasmonic chiral tetramers assembled by DNA origami.
    Shen X; Asenjo-Garcia A; Liu Q; Jiang Q; García de Abajo FJ; Liu N; Ding B
    Nano Lett; 2013 May; 13(5):2128-33. PubMed ID: 23600476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.
    Lee HE; Ahn HY; Mun J; Lee YY; Kim M; Cho NH; Chang K; Kim WS; Rho J; Nam KT
    Nature; 2018 Apr; 556(7701):360-365. PubMed ID: 29670265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A DNA-Based Plasmonic Nanodevice for Cascade Signal Amplification.
    Liu F; Li N; Shang Y; Wang Y; Liu Q; Ma Z; Jiang Q; Ding B
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202114706. PubMed ID: 35301778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DNA Origami-Based Chiral Plasmonic Sensing Device.
    Huang Y; Nguyen MK; Natarajan AK; Nguyen VH; Kuzyk A
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44221-44225. PubMed ID: 30525378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aqueous Gold Overgrowth of Silver Nanoparticles: Merging the Plasmonic Properties of Silver with the Functionality of Gold.
    Mayer M; Steiner AM; Röder F; Formanek P; König TAF; Fery A
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15866-15870. PubMed ID: 29044934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures.
    Liu B; Song C; Zhu D; Wang X; Zhao M; Yang Y; Zhang Y; Su S; Shi J; Chao J; Liu H; Zhao Y; Fan C; Wang L
    Small; 2017 Jun; 13(23):. PubMed ID: 28452121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120108. PubMed ID: 34198118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ordering Gold Nanoparticles with DNA Origami Nanoflowers.
    Schreiber R; Santiago I; Ardavan A; Turberfield AJ
    ACS Nano; 2016 Aug; 10(8):7303-6. PubMed ID: 27341272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.
    Kuzyk A; Schreiber R; Fan Z; Pardatscher G; Roller EM; Högele A; Simmel FC; Govorov AO; Liedl T
    Nature; 2012 Mar; 483(7389):311-4. PubMed ID: 22422265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.
    Qu Y; Cheng R; Su Q; Duan X
    J Am Chem Soc; 2011 Oct; 133(42):16730-3. PubMed ID: 21961900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate.
    Chen Q; Fu Y; Zhang W; Ye S; Zhang H; Xie F; Gong L; Wei Z; Jin H; Chen J
    Talanta; 2017 Apr; 165():516-521. PubMed ID: 28153291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals.
    Hou S; Yan J; Hu Z; Wu X
    Chem Commun (Camb); 2016 Feb; 52(10):2059-62. PubMed ID: 26687977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance.
    Wang P; Huh JH; Park H; Yang D; Zhang Y; Zhang Y; Lee J; Lee S; Ke Y
    Nano Lett; 2020 Dec; 20(12):8926-8932. PubMed ID: 33186046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Toroidal Metamolecules Assembled by DNA Origami.
    Urban MJ; Dutta PK; Wang P; Duan X; Shen X; Ding B; Ke Y; Liu N
    J Am Chem Soc; 2016 May; 138(17):5495-8. PubMed ID: 27082140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of fluorescence core-shell nanotags with different morphology of gold core.
    Svinko VO; Smirnov AN; Shevchuk AI; Demenshin AI; Smirnov AA; Solovyeva EV
    Colloids Surf B Biointerfaces; 2023 Jun; 226():113306. PubMed ID: 37075521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Magnetic-Plasmonic Nanoparticle Assemblies via Interface Engineering of Plasmonic Shells for Targeted Cancer Cell Imaging and Separation.
    Kim MS; Park BC; Kim YJ; Lee JH; Koo TM; Ko MJ; Kim YK
    Small; 2020 May; 16(20):e2001103. PubMed ID: 32329574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles.
    Lu J; Chang YX; Zhang NN; Wei Y; Li AJ; Tai J; Xue Y; Wang ZY; Yang Y; Zhao L; Lu ZY; Liu K
    ACS Nano; 2017 Apr; 11(4):3463-3475. PubMed ID: 28332821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates.
    Gür FN; Schwarz FW; Ye J; Diez S; Schmidt TL
    ACS Nano; 2016 May; 10(5):5374-82. PubMed ID: 27159647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.