BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32459619)

  • 1.
    Bello-López JM; López-Ornelas A; Vilchis-Rangel RE; Ribas-Aparicio RM; Del-Moral P; Donis-Rocandio JE; Cueto J; Aparicio-Ozores G; Moreno J
    J Med Microbiol; 2020 Jun; 69(6):874-880. PubMed ID: 32459619
    [No Abstract]   [Full Text] [Related]  

  • 2. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics.
    Orazi G; Ruoff KL; O'Toole GA
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363032
    [No Abstract]   [Full Text] [Related]  

  • 3. Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers.
    Hooshmand SE; Ebadati A; Hosseini ES; Vahabi AH; Oshaghi M; Rahighi R; Orooji Y; Jahromi MAM; Varma RS; Hamblin MR; Karimi M
    Bioorg Chem; 2022 Feb; 119():105550. PubMed ID: 34920337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan.
    Rahim K; Qasim M; Rahman H; Khan TA; Ahmad I; Khan N; Ullah A; Basit A; Saleha S
    J Wound Care; 2016 Aug; 25(8):480-6. PubMed ID: 27523661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds.
    Ermolaeva SA; Varfolomeev AF; Chernukha MY; Yurov DS; Vasiliev MM; Kaminskaya AA; Moisenovich MM; Romanova JM; Murashev AN; Selezneva II; Shimizu T; Sysolyatina EV; Shaginyan IA; Petrov OF; Mayevsky EI; Fortov VE; Morfill GE; Naroditsky BS; Gintsburg AL
    J Med Microbiol; 2011 Jan; 60(Pt 1):75-83. PubMed ID: 20829396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.
    Weldrick PJ; Hardman MJ; Paunov VN
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43902-43919. PubMed ID: 31718141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo.
    Fitzgerald DJ; Renick PJ; Forrest EC; Tetens SP; Earnest DN; McMillan J; Kiedaisch BM; Shi L; Roche ED
    Wound Repair Regen; 2017 Jan; 25(1):13-24. PubMed ID: 27859922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype.
    Di Domenico EG; Farulla I; Prignano G; Gallo MT; Vespaziani M; Cavallo I; Sperduti I; Pontone M; Bordignon V; Cilli L; De Santis A; Di Salvo F; Pimpinelli F; Lesnoni La Parola I; Toma L; Ensoli F
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28513576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Oxide affects Staphylococcus aureus and Pseudomonas aeruginosa dual species biofilm in Lubbock Chronic Wound Biofilm model.
    Di Giulio M; Di Lodovico S; Fontana A; Traini T; Di Campli E; Pilato S; D'Ercole S; Cellini L
    Sci Rep; 2020 Oct; 10(1):18525. PubMed ID: 33116164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential bactericidal activity of S. nux-vomica-ZnO nanocomposite against multidrug-resistant bacterial pathogens and wound-healing properties.
    Steffy K; Shanthi G; Maroky AS; Selvakumar S
    J Trace Elem Med Biol; 2018 Dec; 50():229-239. PubMed ID: 30262284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens.
    Zhao Y; Paderu P; Delmas G; Dolgov E; Lee MH; Senter M; Park S; Leivers S; Perlin DS
    J Trauma Acute Care Surg; 2015 Oct; 79(4 Suppl 2):S121-9. PubMed ID: 26406424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin- and quinolone-resistant Staphylococcus aureus biofilms.
    Tellis M; Joseph J; Khande H; Bhagwat S; Patel M
    J Med Microbiol; 2019 Aug; 68(8):1129-1136. PubMed ID: 31241446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against
    Chino T; Nukui Y; Morishita Y; Moriya K
    Antimicrob Resist Infect Control; 2017; 6():122. PubMed ID: 29214017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk.
    Picoli T; Peter CM; Zani JL; Waller SB; Lopes MG; Boesche KN; Vargas GDÁ; Hübner SO; Fischer G
    Microb Pathog; 2017 Nov; 112():57-62. PubMed ID: 28943153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
    van der Plas MJ; Jukema GN; Wai SW; Dogterom-Ballering HC; Lagendijk EL; van Gulpen C; van Dissel JT; Bloemberg GV; Nibbering PH
    J Antimicrob Chemother; 2008 Jan; 61(1):117-22. PubMed ID: 17965032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-Potentiation of β-Lactam Antibiotic by Synergistic Combination with Biogenic Copper Oxide Nanocubes against Biofilm Forming Multidrug-Resistant Bacteria.
    Arul Selvaraj RC; Rajendran M; Nagaiah HP
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of zinc oxide, rosin and resin acids and their combinations on bacterial growth and inflammatory cells.
    Söderberg TA
    Scand J Plast Reconstr Surg Hand Surg Suppl; 1990; 22():1-87. PubMed ID: 2284587
    [No Abstract]   [Full Text] [Related]  

  • 18. Silver-pig skin nanocomposites and mesenchymal stem cells: suitable antibiofilm cellular dressings for wound healing.
    Pérez-Díaz MA; Silva-Bermudez P; Jiménez-López B; Martínez-López V; Melgarejo-Ramírez Y; Brena-Molina A; Ibarra C; Baeza I; Martínez-Pardo ME; Reyes-Frías ML; Márquez-Gutiérrez E; Velasquillo C; Martínez-Castañon G; Martinez-Gutierrez F; Sánchez-Sánchez R
    J Nanobiotechnology; 2018 Jan; 16(1):2. PubMed ID: 29321021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds.
    Choi M; Hasan N; Cao J; Lee J; Hlaing SP; Yoo JW
    Int J Biol Macromol; 2020 Jan; 142():680-692. PubMed ID: 31622708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of biofilm formation by polyquaternary polymer.
    Dirain CO; Silva RC; Antonelli PJ
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():157-62. PubMed ID: 27497405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.