These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32459683)

  • 21. Dark blood late enhancement imaging.
    Kellman P; Xue H; Olivieri LJ; Cross RR; Grant EK; Fontana M; Ugander M; Moon JC; Hansen MS
    J Cardiovasc Magn Reson; 2016 Nov; 18(1):77. PubMed ID: 27817748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T
    Sridi S; Nuñez-Garcia M; Sermesant M; Maillot A; Hamrani DE; Magat J; Naulin J; Laurent F; Montaudon M; Jaïs P; Stuber M; Cochet H; Bustin A
    Diagn Interv Imaging; 2022 Dec; 103(12):607-617. PubMed ID: 35961843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid single-breath-hold 3D late gadolinium enhancement cardiac MRI using a stack-of-spirals acquisition.
    Shin T; Lustig M; Nishimura DG; Hu BS
    J Magn Reson Imaging; 2014 Dec; 40(6):1496-502. PubMed ID: 24243575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of papillary muscle infarction by late gadolinium enhancement: incremental value of short-inversion time vs. standard imaging.
    Aldrovandi A; De Ridder SP; Strohm O; Cocker M; Sandonato R; Friedrich MG
    Eur Heart J Cardiovasc Imaging; 2013 May; 14(5):495-9. PubMed ID: 23082008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Intelligence for Contrast-Free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-Based Virtual Native Enhancement.
    Zhang Q; Burrage MK; Shanmuganathan M; Gonzales RA; Lukaschuk E; Thomas KE; Mills R; Leal Pelado J; Nikolaidou C; Popescu IA; Lee YP; Zhang X; Dharmakumar R; Myerson SG; Rider O; ; Channon KM; Neubauer S; Piechnik SK; Ferreira VM
    Circulation; 2022 Nov; 146(20):1492-1503. PubMed ID: 36124774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of view sharing and KWIC filtering into GRASP-Pro improves spatial resolution of single-shot, multi-TI, late gadolinium enhancement MRI.
    Zhao M; Shen D; Fan L; Hong K; Feng L; Benefield BC; Allen BD; Lee DC; Kim D
    NMR Biomed; 2024 Mar; 37(3):e5059. PubMed ID: 37872862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.
    Bizino MB; Tao Q; Amersfoort J; Siebelink HJ; van den Bogaard PJ; van der Geest RJ; Lamb HJ
    Eur Radiol; 2018 Sep; 28(9):4027-4035. PubMed ID: 29626239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bright-blood and dark-blood phase sensitive inversion recovery late gadolinium enhancement and T1 and T2 maps in a single free-breathing scan: an all-in-one approach.
    Kellman P; Xue H; Chow K; Howard J; Chacko L; Cole G; Fontana M
    J Cardiovasc Magn Reson; 2021 Nov; 23(1):126. PubMed ID: 34743718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of 3D and 2D late gadolinium enhancement magnetic resonance imaging in patients with acute and chronic myocarditis.
    Polacin M; Kapos I; Gastl M; Blüthgen C; Karolyi M; von Spiczak J; Eberhard M; Baessler B; Alkadhi H; Kozerke S; Manka R
    Int J Cardiovasc Imaging; 2021 Jan; 37(1):305-313. PubMed ID: 32793996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute, subacute, and chronic myocardial infarction: quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging.
    Goetti R; Kozerke S; Donati OF; Sürder D; Stolzmann P; Kaufmann PA; Lüscher TF; Corti R; Manka R
    Radiology; 2011 Jun; 259(3):704-11. PubMed ID: 21467254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Milotta G; Munoz C; Kunze KP; Neji R; Figliozzi S; Chiribiri A; Hajhosseiny R; Masci PG; Prieto C; Botnar RM
    J Cardiovasc Magn Reson; 2021 May; 23(1):62. PubMed ID: 34024276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance.
    Jada L; Holtackers RJ; Martens B; Nies HMJM; Van De Heyning CM; Botnar RM; Wildberger JE; Ismail TF; Razavi R; Chiribiri A
    Sci Rep; 2024 Mar; 14(1):5395. PubMed ID: 38443457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histopathological Validation of Dark-Blood Late Gadolinium Enhancement MRI Without Additional Magnetization Preparation.
    Holtackers RJ; Gommers S; Heckman LIB; Van De Heyning CM; Chiribiri A; Prinzen FW
    J Magn Reson Imaging; 2022 Jan; 55(1):190-197. PubMed ID: 34169603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging.
    Nies HMJM; Gommers S; Bijvoet GP; Heckman LIB; Prinzen FW; Vogel G; Van De Heyning CM; Chiribiri A; Wildberger JE; Mihl C; Holtackers RJ
    Eur Heart J Cardiovasc Imaging; 2023 Feb; 24(3):364-372. PubMed ID: 35723673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time.
    Gassenmaier S; van der Geest RJ; Schoepf UJ; Suranyi P; Rehwald WG; De Cecco CN; Mastrodicasa D; Albrecht MH; De Santis D; Lesslie VW; Ruzsics B; Varga-Szemes A
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):921-929. PubMed ID: 29305739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach.
    Fahmy AS; Rowin EJ; Chan RH; Manning WJ; Maron MS; Nezafat R
    J Magn Reson Imaging; 2021 Jul; 54(1):303-312. PubMed ID: 33599043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE.
    Pennig L; Lennartz S; Wagner A; Sokolowski M; Gajzler M; Ney S; Laukamp KR; Persigehl T; Bunck AC; Maintz D; Weiss K; Naehle CP; Doerner J
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):89. PubMed ID: 33327958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of gray-blood late gadolinium enhancement evaluation in young patients with congenital and acquired heart disease.
    Gonzalez de Alba C; Moghari MH; Browne LP; Friesen RM; Fonseca B; Malone LJ
    Front Cardiovasc Med; 2023; 10():1269412. PubMed ID: 37915741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography.
    Ginami G; Neji R; Rashid I; Chiribiri A; Ismail TF; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):94. PubMed ID: 29178893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. REPAIRit: Improving Myocardial Nulling and Ghosting Artifacts of 3D Navigator-Gated Late Gadolinium Enhancement Imaging During Arrhythmia.
    Hu C; Huber S; Latif SR; Santacana-Laffitte G; Mojibian HR; Baldassarre LA; Peters DC
    J Magn Reson Imaging; 2019 Mar; 49(3):688-699. PubMed ID: 30252987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.