BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32459861)

  • 1. Comparative physiological and proteomic analysis deciphering tolerance and homeostatic signaling pathways in chrysanthemum under drought stress.
    Sahithi BM; Razi K; Al Murad M; Vinothkumar A; Jagadeesan S; Benjamin LK; Jeong BR; Muneer S
    Physiol Plant; 2021 Jun; 172(2):289-303. PubMed ID: 32459861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway.
    Jaffar MA; Song A; Faheem M; Chen S; Jiang J; Liu C; Fan Q; Chen F
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness.
    Wang T; Wei Q; Wang Z; Liu W; Zhao X; Ma C; Gao J; Xu Y; Hong B
    J Integr Plant Biol; 2022 Mar; 64(3):741-755. PubMed ID: 34889055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Editing of the
    Usman B; Nawaz G; Zhao N; Liao S; Liu Y; Li R
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium).
    Yang Y; Zhu K; Wu J; Liu L; Sun G; He Y; Chen F; Yu D
    Plant Cell Rep; 2016 Aug; 35(8):1783-98. PubMed ID: 27233639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz).
    Shan Z; Luo X; Wei M; Huang T; Khan A; Zhu Y
    Sci Rep; 2018 Dec; 8(1):17982. PubMed ID: 30568257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress.
    Xiao X; Yang F; Zhang S; Korpelainen H; Li C
    Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of photosynthesis and other proteins during water-stress.
    Dalal VK
    Mol Biol Rep; 2021 Apr; 48(4):3681-3693. PubMed ID: 33856605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus.
    Zhou S; Li M; Guan Q; Liu F; Zhang S; Chen W; Yin L; Qin Y; Ma F
    Plant Sci; 2015 Jul; 236():44-60. PubMed ID: 26025520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The A subunit of vacuolar H
    Liu YH; Zou ZH; Zhang MM; Guan ZJ; Du LD; Hu DG; Zheng CS; Sun CH
    Plant Sci; 2024 Jul; 344():112105. PubMed ID: 38663481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chrysanthemum DEAD-box RNA helicase CmRH56 regulates rhizome outgrowth in response to drought stress.
    Zhang L; Xu Y; Liu X; Qin M; Li S; Jiang T; Yang Y; Jiang CZ; Gao J; Hong B; Ma C
    J Exp Bot; 2022 Sep; 73(16):5671-5681. PubMed ID: 35595538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in
    Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.).
    Gołębiowska-Pikania G; Kopeć P; Surówka E; Janowiak F; Krzewska M; Dubas E; Nowicka A; Kasprzyk J; Ostrowska A; Malaga S; Hura T; Żur I
    J Proteomics; 2017 Oct; 169():73-86. PubMed ID: 28751243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.
    Wu Y; Mirzaei M; Pascovici D; Chick JM; Atwell BJ; Haynes PA
    J Proteomics; 2016 Jun; 143():73-82. PubMed ID: 27195813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling.
    Zadražnik T; Egge-Jacobsen W; Meglič V; Šuštar-Vozlič J
    J Plant Physiol; 2017 Feb; 209():42-50. PubMed ID: 28013170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops.
    Razi K; Muneer S
    Crit Rev Biotechnol; 2021 Aug; 41(5):669-691. PubMed ID: 33525946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties.
    Li H; Yang M; Zhao C; Wang Y; Zhang R
    BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of a novel chrysanthemum Cys2/His2-type zinc finger protein gene DgZFP3 confers drought tolerance in tobacco.
    Liu QL; Xu KD; Zhong M; Pan YZ; Jiang BB; Liu GL; Jia Y; Zhang HQ
    Biotechnol Lett; 2013 Nov; 35(11):1953-9. PubMed ID: 23881327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.