BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32460032)

  • 41. Learning from mouse models of MLL fusion gene-driven acute leukemia.
    Schwaller J
    Biochim Biophys Acta Gene Regul Mech; 2020 Aug; 1863(8):194550. PubMed ID: 32320749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ZNF521 Enhances MLL-AF9-Dependent Hematopoietic Stem Cell Transformation in Acute Myeloid Leukemias by Altering the Gene Expression Landscape.
    Chiarella E; Aloisio A; Scicchitano S; Todoerti K; Cosentino EG; Lico D; Neri A; Amodio N; Bond HM; Mesuraca M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia.
    Möhle R; Schittenhelm M; Failenschmid C; Bautz F; Kratz-Albers K; Serve H; Brugger W; Kanz L
    Br J Haematol; 2000 Sep; 110(3):563-72. PubMed ID: 10997965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia.
    Chu Y; Chen Y; Guo H; Li M; Wang B; Shi D; Cheng X; Guan J; Wang X; Xue C; Cheng T; Shi J; Yuan W
    Oncogene; 2020 Dec; 39(50):7239-7252. PubMed ID: 33037410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells.
    Chapellier M; Peña-Martínez P; Ramakrishnan R; Eriksson M; Talkhoncheh MS; Orsmark-Pietras C; Lilljebjörn H; Högberg C; Hagström-Andersson A; Fioretos T; Larsson J; Järås M
    Haematologica; 2019 Oct; 104(10):2006-2016. PubMed ID: 30819903
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Internal tandem duplication mutations in FLT3 gene augment chemotaxis to Cxcl12 protein by blocking the down-regulation of the Rho-associated kinase via the Cxcl12/Cxcr4 signaling axis.
    Onishi C; Mori-Kimachi S; Hirade T; Abe M; Taketani T; Suzumiya J; Sugimoto T; Yamaguchi S; Kapur R; Fukuda S
    J Biol Chem; 2014 Nov; 289(45):31053-65. PubMed ID: 25237195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [CXCR4: a new therapeutic target of the leukaemic cell? Role of the SDF-1/CXCR4 axis in acute myeloid leukaemia].
    Tavernier E; Aanei C; Solly F; Flandrin-Gresta P; Campos L; Guyotat D
    Bull Cancer; 2014 Jun; 101(6):593-604. PubMed ID: 24977448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment.
    Piya S; Mu H; Bhattacharya S; Lorenzi PL; Davis RE; McQueen T; Ruvolo V; Baran N; Wang Z; Qian Y; Crews CM; Konopleva M; Ishizawa J; You MJ; Kantarjian H; Andreeff M; Borthakur G
    J Clin Invest; 2019 May; 129(5):1878-1894. PubMed ID: 30829648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts.
    Kremer KN; Dudakovic A; Hess AD; Smith BD; Karp JE; Kaufmann SH; Westendorf JJ; van Wijnen AJ; Hedin KE
    J Biol Chem; 2015 Dec; 290(49):29478-92. PubMed ID: 26491017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment.
    Stubbs MC; Kim YM; Krivtsov AV; Wright RD; Feng Z; Agarwal J; Kung AL; Armstrong SA
    Leukemia; 2008 Jan; 22(1):66-77. PubMed ID: 17851551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition.
    Chen L; Chen W; Mysliwski M; Serio J; Ropa J; Abulwerdi FA; Chan RJ; Patel JP; Tallman MS; Paietta E; Melnick A; Levine RL; Abdel-Wahab O; Nikolovska-Coleska Z; Muntean AG
    Leukemia; 2015 Jun; 29(6):1290-300. PubMed ID: 25650089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Stimulated Photodynamic Nanoreactor in Combination with CXCR4 Antagonists for Antileukemia Therapy.
    Zhang Y; Chen L; Fu T; Xu A; Li K; Hao K; Lyu J; Wang Z; Kong F
    ACS Appl Mater Interfaces; 2024 May; 16(17):21610-21622. PubMed ID: 38647446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress.
    Zhang Y; Dépond M; He L; Foudi A; Kwarteng EO; Lauret E; Plo I; Desterke C; Dessen P; Fujii N; Opolon P; Herault O; Solary E; Vainchenker W; Joulin V; Louache F; Wittner M
    Sci Rep; 2016 Nov; 6():37827. PubMed ID: 27886253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Establishment of AML Mouse Model by Transplantation of Hematopoietic Cells from MLL-AF9 Transgenic Mice].
    Long WY; Shen X; Xing S; Xiong GL; Wang HG; Yu ZY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2021 Oct; 29(5):1369-1374. PubMed ID: 34627412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes.
    Abe-Suzuki S; Kurata M; Abe S; Onishi I; Kirimura S; Nashimoto M; Murayama T; Hidaka M; Kitagawa M
    Lab Invest; 2014 Nov; 94(11):1212-23. PubMed ID: 25199050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Research Advance of CXCR4 Inhibitors in the Treatment of Acute Myeloid Leukemia--Review].
    Liang JP; Li W
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2021 Aug; 29(4):1355-1359. PubMed ID: 34362530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression.
    Zheng Y; Zhang H; Wang Y; Li X; Lu P; Dong F; Pang Y; Ma S; Cheng H; Hao S; Tang F; Yuan W; Zhang X; Cheng T
    Leukemia; 2016 Dec; 30(12):2373-2384. PubMed ID: 27133822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CXCL12 promotes glycolytic reprogramming in acute myeloid leukemia cells via the CXCR4/mTOR axis.
    Braun M; Qorraj M; Büttner M; Klein FA; Saul D; Aigner M; Huber W; Mackensen A; Jitschin R; Mougiakakos D
    Leukemia; 2016 Aug; 30(8):1788-92. PubMed ID: 26952837
    [No Abstract]   [Full Text] [Related]  

  • 59. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
    Gao Y; Gao J; Li M; Zheng Y; Wang Y; Zhang H; Wang W; Chu Y; Wang X; Xu M; Cheng T; Ju Z; Yuan W
    J Hematol Oncol; 2016 Apr; 9():36. PubMed ID: 27071307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast-Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis.
    Sterner RM; Kremer KN; Dudakovic A; Westendorf JJ; van Wijnen AJ; Hedin KE
    J Immunol; 2018 Aug; 201(3):1086-1096. PubMed ID: 29914885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.