These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32460068)

  • 1. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review.
    Azizoglu U; Jouzani GS; Yilmaz N; Baz E; Ozkok D
    Sci Total Environ; 2020 Sep; 734():139169. PubMed ID: 32460068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial insecticidal toxins.
    Chattopadhyay A; Bhatnagar NB; Bhatnagar R
    Crit Rev Microbiol; 2004; 30(1):33-54. PubMed ID: 15116762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review.
    da Silva WJ; Pilz-Júnior HL; Heermann R; da Silva OS
    Parasit Vectors; 2020 Jul; 13(1):376. PubMed ID: 32727530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts.
    Cimen H; Touray M; Gulsen SH; Hazir S
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promise for plant pest control: root-associated pseudomonads with insecticidal activities.
    Kupferschmied P; Maurhofer M; Keel C
    Front Plant Sci; 2013; 4():287. PubMed ID: 23914197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.
    Karabörklü S; Azizoglu U; Azizoglu ZB
    World J Microbiol Biotechnol; 2017 Dec; 34(1):14. PubMed ID: 29255969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining the Natural Product Repertoire in Entomopathogenic Bacteria.
    Tobias NJ; Shi YM; Bode HB
    Trends Microbiol; 2018 Oct; 26(10):833-840. PubMed ID: 29801772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture.
    ffrench-Constant RH; Dowling A; Waterfield NR
    Toxicon; 2007 Mar; 49(4):436-51. PubMed ID: 17207509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically Engineering Entomopathogenic Fungi.
    Zhao H; Lovett B; Fang W
    Adv Genet; 2016; 94():137-63. PubMed ID: 27131325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar Regulation and Virulence in the Entomopathogenic Bacteria-Xenorhabdus nematophila and Photorhabdus luminescens.
    Givaudan A; Lanois A
    Curr Top Microbiol Immunol; 2017; 402():39-51. PubMed ID: 28091933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S; Chandra A; Pandey KC
    J Environ Biol; 2008 Sep; 29(5):641-53. PubMed ID: 19295059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.
    Aymeric JL; Givaudan A; Duvic B
    Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.
    Abebe-Akele F; Tisa LS; Cooper VS; Hatcher PJ; Abebe E; Thomas WK
    BMC Genomics; 2015 Jul; 16(1):531. PubMed ID: 26187596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect Pathogenic Bacteria in Integrated Pest Management.
    Ruiu L
    Insects; 2015 Apr; 6(2):352-67. PubMed ID: 26463190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass production of entomopathogenic nematodes for plant protection.
    Ehlers RU
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):623-33. PubMed ID: 11601608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tc genes of Photorhabdus: a growing family.
    Waterfield NR; Bowen DJ; Fetherston JD; Perry RD; ffrench-Constant RH
    Trends Microbiol; 2001 Apr; 9(4):185-91. PubMed ID: 11286884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression.
    Kim Y; Ji D; Cho S; Park Y
    J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes.
    Gulcu B; Hazir S; Kaya HK
    J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.