These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32460484)

  • 1. Benzene Derivatives Analysis Using Aluminum Nitride Waveguide Raman Sensors.
    Makela M; Gordon P; Tu D; Soliman C; Coté GL; Maitland K; Lin PT
    Anal Chem; 2020 Jul; 92(13):8917-8922. PubMed ID: 32460484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithically Integrated Si-on-AlN Mid-Infrared Photonic Chips for Real-Time and Label-Free Chemical Sensing.
    Jin T; Lin HG; Lin PT
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42905-42911. PubMed ID: 29171251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Mid-infrared Photonic Circuits for Real-time and Label-Free Hydroxyl Compound Detection.
    Jin T; Lin HG; Tiwald T; Lin PT
    Sci Rep; 2019 Mar; 9(1):4153. PubMed ID: 30858396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides.
    Dhakal A; Subramanian AZ; Wuytens P; Peyskens F; Le Thomas N; Baets R
    Opt Lett; 2014 Jul; 39(13):4025-8. PubMed ID: 24978798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time and Label-Free Chemical Sensor-on-a-chip using Monolithic Si-on-BaTiO
    Jin T; Li L; Zhang B; Lin HG; Wang H; Lin PT
    Sci Rep; 2017 Jul; 7(1):5836. PubMed ID: 28724901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy.
    Dhakal A; Wuytens P; Raza A; Le Thomas N; Baets R
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.
    Dhakal A; Peyskens F; Clemmen S; Raza A; Wuytens P; Zhao H; Le Thomas N; Baets R
    Interface Focus; 2016 Aug; 6(4):20160015. PubMed ID: 27499842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.
    Lin PT; Singh V; Hu J; Richardson K; Musgraves JD; Luzinov I; Hensley J; Kimerling LC; Agarwal A
    Lab Chip; 2013 Jun; 13(11):2161-6. PubMed ID: 23620303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors.
    Zhou J; Al Husseini D; Li J; Lin Z; Sukhishvili S; Coté GL; Gutierrez-Osuna R; Lin PT
    Sci Rep; 2022 Apr; 12(1):5572. PubMed ID: 35368033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and use of a Raman liquid-core waveguide sensor using preconcentration principles.
    Tanikkul S; Jakmunee J; Rayanakorn M; Grudpan K; Marquardt BJ; Gross GM; Prazen BJ; Burgess LW; Christian GD; Synovec RE
    Talanta; 2003 Mar; 59(4):809-16. PubMed ID: 18968968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High index contrast photonic platforms for on-chip Raman spectroscopy.
    Raza A; Clemmen S; Wuytens P; de Goede M; Tong ASK; Le Thomas N; Liu C; Suntivich J; Skirtach AG; Garcia-Blanco SM; Blumenthal DJ; Wilkinson JS; Baets R
    Opt Express; 2019 Aug; 27(16):23067-23079. PubMed ID: 31510589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foundry-based waveguide-enhanced Raman spectroscopy in the visible.
    Tyndall NF; Emmons ED; Pruessner MW; Rabinovich WS; Wilcox PG; Tripathi A; Guicheteau JA; Stievater TH
    Opt Express; 2024 Feb; 32(4):4745-4755. PubMed ID: 38439219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time and non-destructive hydrocarbon gas sensing using mid-infrared integrated photonic circuits.
    Jin T; Zhou J; Lin PT
    RSC Adv; 2020; 10(13):7452-7459. PubMed ID: 33425327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles.
    Kong L; Lee C; Earhart CM; Cordovez B; Chan JW
    Opt Express; 2015 Mar; 23(5):6793-802. PubMed ID: 25836898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides.
    Lin PT; Giammarco J; Borodinov N; Savchak M; Singh V; Kimerling LC; Tan DT; Richardson KA; Luzinov I; Agarwal A
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11189-94. PubMed ID: 25924561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review.
    Ettabib MA; Marti A; Liu Z; Bowden BM; Zervas MN; Bartlett PN; Wilkinson JS
    ACS Sens; 2021 Jun; 6(6):2025-2045. PubMed ID: 34114813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating low Raman background in UV-written SiO
    Jensen MN; Gates JC; Flint AI; Hellesø OG
    Opt Express; 2023 Sep; 31(19):31092-31107. PubMed ID: 37710637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J
    Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stokes and anti-Stokes Raman scatterings from frequency comb lines in poly-crystalline aluminum nitride microring resonators.
    Jung H; Gong Z; Liu X; Guo X; Zou CL; Tang HX
    Opt Express; 2019 Aug; 27(16):22246-22253. PubMed ID: 31510521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.
    Rojalin T; Kurki L; Laaksonen T; Viitala T; Kostamovaara J; Gordon KC; Galvis L; Wachsmann-Hogiu S; Strachan CJ; Yliperttula M
    Anal Bioanal Chem; 2016 Jan; 408(3):761-74. PubMed ID: 26549117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.