These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32460484)

  • 21. Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit.
    Liu Z; Zhao H; Baumgartner B; Lendl B; Stassen A; Skirtach A; Thomas NL; Baets R
    Opt Lett; 2021 Mar; 46(5):1153-1156. PubMed ID: 33649680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waveguide-coupled directional Raman radiation for surface analysis.
    Chen C; Li JY; Wang L; Lu DF; Qi ZM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection.
    Jin T; Zhou J; Lin HG; Lin PT
    Anal Chem; 2019 Jan; 91(1):817-822. PubMed ID: 30516952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss.
    Tang Y; Luo Q; Chen Y; Xu K
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides.
    Dhakal A; Raza A; Peyskens F; Subramanian AZ; Clemmen S; Le Thomas N; Baets R
    Opt Express; 2015 Oct; 23(21):27391-404. PubMed ID: 26480401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants.
    Tyndall NF; Stievater TH; Kozak DA; Koo K; McGill RA; Pruessner MW; Rabinovich WS; Holmstrom SA
    Opt Lett; 2018 Oct; 43(19):4803-4806. PubMed ID: 30272744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.
    Wang Z; Pearce SJ; Lin YC; Zervas MN; Bartlett PN; Wilkinson JS
    Appl Spectrosc; 2016 Aug; 70(8):1384-91. PubMed ID: 27301326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide.
    Zhao H; Clemmen S; Raza A; Baets R
    Opt Lett; 2018 Mar; 43(6):1403-1406. PubMed ID: 29543246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water monitoring by optofluidic Raman spectroscopy for in situ applications.
    Persichetti G; Bernini R
    Talanta; 2016 Aug; 155():145-52. PubMed ID: 27216667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Raman waveguide detector for liquid chromatography.
    Marquardt BJ; Vahey PG; Synovec RE; Burgess LW
    Anal Chem; 1999 Nov; 71(21):4808-14. PubMed ID: 10565272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides.
    Cao Q; Feng J; Lu H; Zhang H; Zhang F; Zeng H
    Opt Express; 2018 Sep; 26(19):24614-24620. PubMed ID: 30469574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.
    Ozhikandathil J; Packirisamy M
    J Biophotonics; 2013 May; 6(5):457-67. PubMed ID: 22829397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.
    Kim S; Qi M
    Opt Express; 2016 Jan; 24(2):773-86. PubMed ID: 26832462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-based waveguides: novel method for detecting biological activity.
    Kim J; Kasture M; Hwang T; Kulkarni A; Amin R; Park S; Kim T; Gosavi S
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1069-75. PubMed ID: 22569782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orientation effects in waveguide resonance Raman spectroscopy of monolayers.
    Kanger JS; Otto C
    Appl Spectrosc; 2003 Dec; 57(12):1487-93. PubMed ID: 14686770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband directional coupling in aluminum nitride nanophotonic circuits.
    Stegmaier M; Pernice WH
    Opt Express; 2013 Mar; 21(6):7304-15. PubMed ID: 23546114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waveguide-Enhanced Raman Spectroscopy (WERS): An Emerging Chip-Based Tool for Chemical and Biological Sensing.
    Wang P; Miller BL
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared.
    Katiyi A; Karabchevsky A
    ACS Sens; 2018 Mar; 3(3):618-623. PubMed ID: 29436815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on Fabrication of ZnO Waveguide Layer for Love Wave Humidity Sensor Based on Magnetron Sputtering.
    Wen C; Niu T; Ma Y; Gao N; Ru F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.