These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32460489)

  • 1. NMR Spin-Spin Coupling Constants Derived from Relativistic Four-Component DFT Theory-Analysis and Visualization.
    Komorovsky S; Jakubowska K; Świder P; Repisky M; Jaszuński M
    J Phys Chem A; 2020 Jun; 124(25):5157-5169. PubMed ID: 32460489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated ab initio calculations of one-bond
    Rusakova IL; Rusakov YY
    Magn Reson Chem; 2020 Oct; 58(10):929-940. PubMed ID: 32453871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of relativistic effects on nuclear magnetic resonance spin-spin coupling constant polarizabilities of H
    Pagola GI; Larsen MAB; Ferraro M; Sauer SPA
    J Comput Chem; 2018 Dec; 39(31):2589-2600. PubMed ID: 30485474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.
    Rusakova IL; Rusakov YY; Krivdin LB
    J Comput Chem; 2016 Jun; 37(15):1367-72. PubMed ID: 26931355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):214-21. PubMed ID: 24549877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.
    Wodyński A; Malkina OL; Pecul M
    J Phys Chem A; 2016 Jul; 120(28):5624-34. PubMed ID: 27177252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.
    Ruud K; Demissie TB; Jaszuński M
    J Chem Phys; 2014 May; 140(19):194308. PubMed ID: 24852539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational Corrections to NMR Spin-Spin Coupling Constants from Relativistic Four-Component DFT Calculations.
    Jakubowska K; Pecul M; Ruud K
    J Phys Chem A; 2022 Oct; 126(39):7013-7020. PubMed ID: 36135807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic effects in the one-bond spin-spin coupling constants involving selenium.
    Rusakova IL; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Sep; 52(9):500-10. PubMed ID: 25043341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing interactions through space using spin-spin coupling.
    Stanford MW; Knight FR; Athukorala Arachchige KS; Sanz Camacho P; Ashbrook SE; Bühl M; Slawin AM; Woollins JD
    Dalton Trans; 2014 May; 43(17):6548-60. PubMed ID: 24623141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections.
    Oprea CI; Rinkevicius Z; Vahtras O; Agren H; Ruud K
    J Chem Phys; 2005 Jul; 123(1):014101. PubMed ID: 16035827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.
    Moncho S; Autschbach J
    J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effects on heavy atom nuclear spin-spin coupling constants: a theoretical study of Hg-C and Pt-P couplings.
    Autschbach J; Ziegler T
    J Am Chem Soc; 2001 Apr; 123(14):3341-9. PubMed ID: 11457070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of indirect nuclear spin-spin coupling tensors for polyatomic xenon fluorides and group 17 fluorides: results from relativistic density-functional calculations.
    Bryce DL; Wasylishen RE
    Inorg Chem; 2002 Jun; 41(12):3091-101. PubMed ID: 12054987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical calculations of
    Rusakova IL; Rusakov YY
    Magn Reson Chem; 2021 Apr; 59(4):359-407. PubMed ID: 33095923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.
    Autschbach J
    Chemphyschem; 2009 Sep; 10(13):2274-83. PubMed ID: 19670399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation.
    Lino JBDR; Sauer SPA; Ramalho TC
    J Phys Chem A; 2020 Jun; 124(24):4946-4955. PubMed ID: 32463687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.