These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 32461271)
1. The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. Stratford M; Vallières C; Geoghegan IA; Archer DB; Avery SV mSphere; 2020 May; 5(3):. PubMed ID: 32461271 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the potential of natural product combinations with sorbic acid for improving preservative action against food-spoilage yeasts. Harvey HJ; Hendry AC; Archer DB; Avery SV Fungal Biol; 2023; 127(7-8):1218-1223. PubMed ID: 37495311 [TBL] [Abstract][Full Text] [Related]
3. Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene. Stratford M; Plumridge A; Archer DB Appl Environ Microbiol; 2007 Oct; 73(20):6534-42. PubMed ID: 17766451 [TBL] [Abstract][Full Text] [Related]
4. High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative. Papadimitriou MN; Resende C; Kuchler K; Brul S Int J Food Microbiol; 2007 Jan; 113(2):173-9. PubMed ID: 17141908 [TBL] [Abstract][Full Text] [Related]
5. Sorbic acid resistance: the inoculum effect. Steels H; James SA; Roberts IN; Stratford M Yeast; 2000 Sep; 16(13):1173-83. PubMed ID: 10992281 [TBL] [Abstract][Full Text] [Related]
6. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Stratford M; Steels H; Nebe-von-Caron G; Novodvorska M; Hayer K; Archer DB Int J Food Microbiol; 2013 Aug; 166(1):126-34. PubMed ID: 23856006 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Heteroresistance on Minimum Inhibitory Concentration, Investigated Using Weak-Acid Stress in Food Spoilage Yeasts. Violet J; Smid J; Pielaat A; Sanders JW; Avery SV Appl Environ Microbiol; 2023 Jun; 89(6):e0012523. PubMed ID: 37255457 [TBL] [Abstract][Full Text] [Related]
8. Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives. Stratford M; Steels H; Nebe-von-Caron G; Avery SV; Novodvorska M; Archer DB Int J Food Microbiol; 2014 Jul; 181(100):40-7. PubMed ID: 24813627 [TBL] [Abstract][Full Text] [Related]
9. The spoilage yeast Zygosaccharomyces bailii: Foe or friend? Kuanyshev N; Adamo GM; Porro D; Branduardi P Yeast; 2017 Sep; 34(9):359-370. PubMed ID: 28556381 [TBL] [Abstract][Full Text] [Related]
10. Evidence that sorbic acid does not inhibit yeast as a classic 'weak acid preservative'. Stratford M; Anslow PA Lett Appl Microbiol; 1998 Oct; 27(4):203-6. PubMed ID: 9812395 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory effect of four novel synthetic peptides on food spoilage yeasts. Shwaiki LN; Arendt EK; Lynch KM; Thery TLC Int J Food Microbiol; 2019 Jul; 300():43-52. PubMed ID: 31035250 [TBL] [Abstract][Full Text] [Related]
12. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Stratford M; Nebe-von-Caron G; Steels H; Novodvorska M; Ueckert J; Archer DB Int J Food Microbiol; 2013 Feb; 161(3):164-71. PubMed ID: 23334094 [TBL] [Abstract][Full Text] [Related]
13. Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. Steels H; James SA; Roberts IN; Stratford M J Appl Microbiol; 1999 Oct; 87(4):520-7. PubMed ID: 10583679 [TBL] [Abstract][Full Text] [Related]
14. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Martorell P; Stratford M; Steels H; Fernández-Espinar MT; Querol A Int J Food Microbiol; 2007 Mar; 114(2):234-42. PubMed ID: 17239464 [TBL] [Abstract][Full Text] [Related]
15. The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. Stead D J Appl Bacteriol; 1995 Jan; 78(1):82-7. PubMed ID: 7883649 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Stratford M; Plumridge A; Nebe-von-Caron G; Archer DB Int J Food Microbiol; 2009 Nov; 136(1):37-43. PubMed ID: 19846233 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of weak acid preservatives on spoilage fungi of bakery products. Moro CB; Lemos JG; Gasperini AM; Stefanello A; Garcia MV; Copetti MV Int J Food Microbiol; 2022 Aug; 374():109723. PubMed ID: 35643035 [TBL] [Abstract][Full Text] [Related]
18. Adaptation to sorbic acid in low sugar promotes resistance of yeast to the preservative. Harvey HJ; Hendry AC; Chirico M; Archer DB; Avery SV Heliyon; 2023 Nov; 9(11):e22057. PubMed ID: 38034742 [TBL] [Abstract][Full Text] [Related]
19. Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Mollapour M; Fong D; Balakrishnan K; Harris N; Thompson S; Schüller C; Kuchler K; Piper PW Yeast; 2004 Aug; 21(11):927-46. PubMed ID: 15334557 [TBL] [Abstract][Full Text] [Related]
20. The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mollapour M; Piper PW Mol Microbiol; 2001 Nov; 42(4):919-30. PubMed ID: 11737636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]